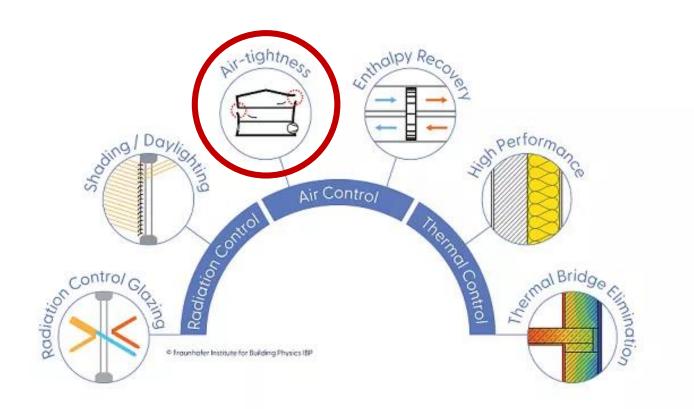


Whole Building Blower Door Testing

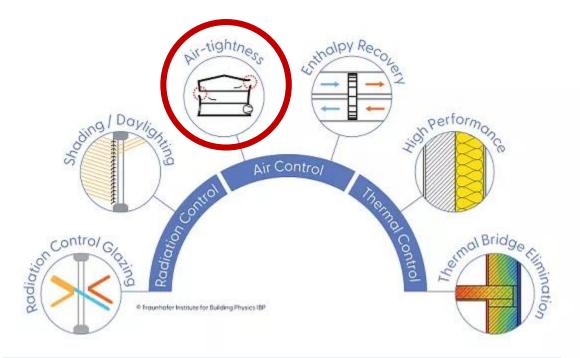


Collin Olson

- Senior Staff Physicist
- 25+ years experience in building science & performance
- Ph.D. from Univ. of Wisconsin, Madison

PHIUS Commercial Building Standards

PHIUS CORE COMM



https://www.phius.org/phius-corecomm-standard-specifications

- Airtightness Critical for building durability
- Phius sets a pass/fail certification requirement on airtightness. It is per square foot of gross enclosure surface area and has varying limits based on test pressure.
- Full building pressurization and depressurization tests are required to show compliance with this threshold.
- For most projects, the threshold is
 0.060 CFM50 per square foot of enclosure, but the exact requirements and protocol for each project can be found in the Certification Guidebook.

Airtightness is measured via a Blower Door Test

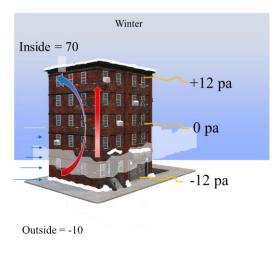

Agenda

- Building Performance and Air Tightness
- Planning a Blower Door Test
- Running a Blower Door Test
- Interpreting Results & Building a Report

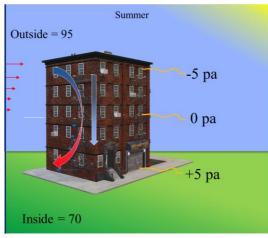
What Happens During a Blower Door Test?

 A blower door test is typically done at an induced pressure difference of 50 (or 75) Pascals(Pa)*

 The fan is turned on and adjusted to change the pressure difference between inside and outside the building by 50 (or 75) Pa and the flow is measured.



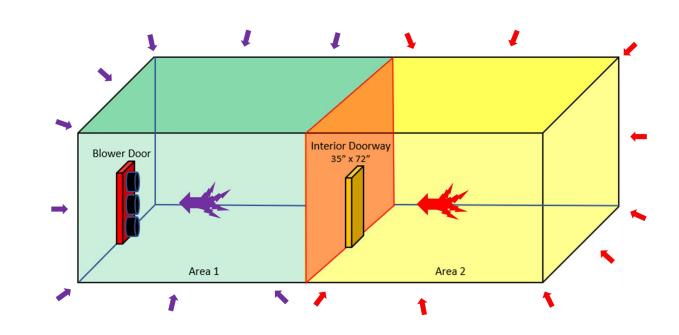
A Blower Door Test induces a pressure difference between inside and outside


* - Note: To simplify the explanation, we will talk about a single point blower door test at 50 PA. The same principles hold for multi-point tests using different pressures.

Considerations in Whole Building (Beyond Residential) Winter

- Baseline To address variation from Wind and Stack effect
 - Measure at 4 locations, lowest variability
- Monitor stack at top and bottom
 - Ensure target pressures for the test move all the leaks in one direction for all test pressures
 - TECLOG will complete this calculation for you when running E3158 test standard

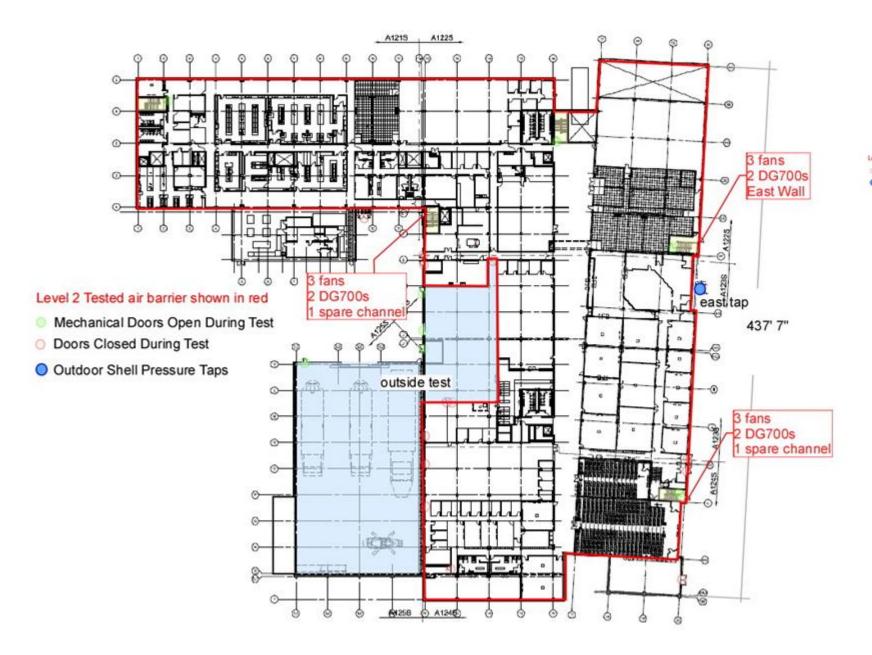
Summer



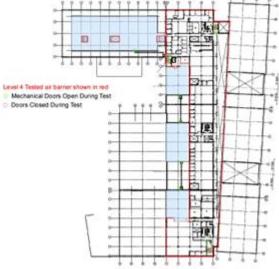
What Season?

Considerations in Whole Building (Beyond Residential)

- Single Zone Conditions
 - Partitions, floors and doors divide up spaces
 - Ensure that bottlenecked locations are within 10% of each other

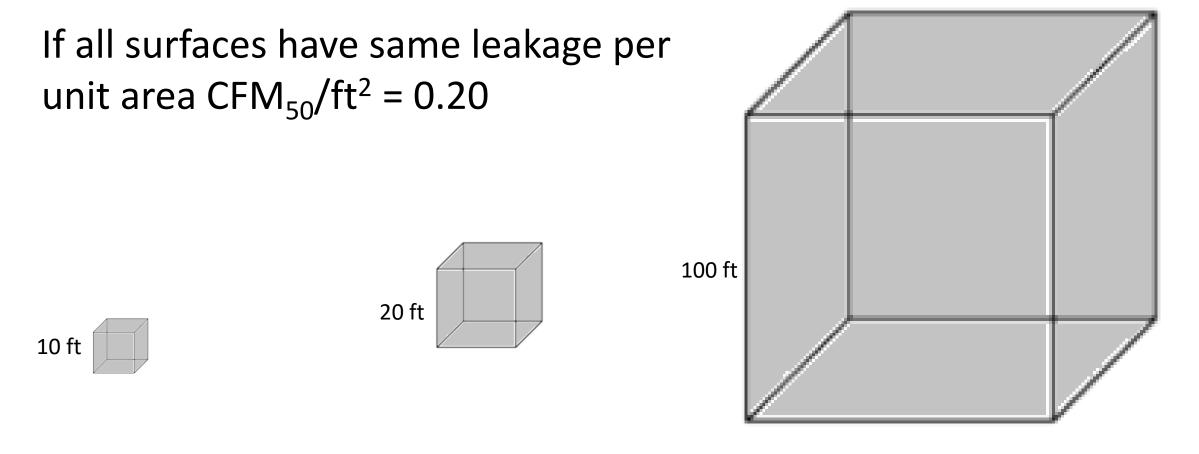

Bottle Neck Example

Agenda


- Building Performance and Air Tightness
- Planning a Blower Door Test
- Running a Blower Door Test
- Interpreting Results & Building a Report

Planning a Blower Door Test

Process	Goals
Test Goals & Standards	Understand requirements of tests, metrics; Phius, E779 , E3158 , Envelope vs. Operational
Review blueprints	ID Test Boundaries, ID HVAC mechanicals
Determine # of Fans	Capacity to confirm compliance, etc.
HVAC Mechanical Prep	Sealing approach, equipment, etc.
AC Power	Ensure access to circuits needed
Plans with Building	Occupants, Safety, etc.


Airtightness Units / Metrics

• Airflow at a test pressure:

- CFM at 50 pascals (CFM50)
- CFM at 75 pascals (CFM75)

Normalized Metrics

- CFM50 per sq ft enclosure = CFM at 50 Pa per square foot of enclosure (5 or 6 sides of the box)
- CFM75 per sq ft enclosure = CFM at 75 Pa per square foot of enclosure (5 or 6 sides of the box)
- ACH50 = Air Changes per Hour at 50 Pascals = CFM50*60/Volume
- SLA = ELA (4 Pa)/Conditioned Floor Area (both in same units)
- Equivalent Leakage Areas
 - ELA (4 pa) = the area of a theoretical hole (with rounded edges) in the building envelope that would leak as much as all of the building's actual holes at a pressure difference of 4 Pa. ELA (in square inches) approximately equals cfm50 divided by 18
 - EqLA (10 pa) = the area of a theoretical sharp-edged hole in the building envelope that would leak as much as all of the building's actual holes at a pressure difference of 10 Pa. EqLA (in square inches) approximately equals cfm50 divided by 10.

 $CFM_{50}/ft^2 = 0.20$ ACH50 = 600*0.20/1000*60 = 7.2 $CFM_{50}/ft^2 = 0.20$ ACH50 = 2400*0.20/8000*60 = 3.6 CFM₅₀/ft² = 0.20 ACH50 = 60000*0.20/1000000*60 = 0.72

How much air do I need?

- Maximum leakage rate specified
 - Bring enough to induce the specified pressure difference with the specified flowrate
 - E.g. Area enclosure (ft2) x 0.25 cfm/ft2 at 75 pascals (ACE spec)
 - 0.6 ACH x enclosure volume (ft3) / 60 m/hr (passiv haus)
- Ordinary construction
 - 0.2 1.2 cfm/ft2 at 75 pascals ?

TEC has a Simple Excel Tool

Understanding Data Collection for ASTM E3158-18

Category	Subcategory	Requirement
Pressure Uniformity	Allowed pressure variation between spaces	≤ 10% of induced envelope pressure
	Min verification locations	Every 10 stories including top, bottom and middle floor
	Exceptions	If all rooms interconnected with 2 m ² opening & total fan airflow at highest induced test pressure is < 6000 cfm, uniformity assumed
Baseline Pressure	Multi-point	Before & After (12 points min for 10 seconds each)
Range of Test Pressures	Multi-point	10 Pa \leq Induced $\Delta P \leq$ 100 Pa; min range = 25 Pa
# Test Points & Duration	Multi-point	≥ 10 points for at least 2x length of intervals used in baseline
Reporting Metric(s)	Multi-point	C, n, air leakage in units spec'd
Acceptable Ranges	Multi-point	$0.45 \le n \le 1.05$ $r^2 \ge 0.98$ QP measured < reqmnt & 95% Cl $\le 8\%$ reqmnt Largest pressure to be min 0.9 * (Δ P ref)
Accepted Test Direction		Depressurize, Pressurize, or Both
Other		Provides option for multi-zone / guarded testing

Prepare the Building

- If the whole building is one test zone
 - Close exterior doors and windows
 - Open interior doors (security exceptions)
- Close and mask HVAC penetrations IAW Specifications
- Default HVAC Penetrations
 - All exhausts and make-up air units off
 - Motorized O/A, make-up air, exhausts and relief air dampers in closed position
 - Gravity dampers left as found (option: block closed so they do not open during test)

Understanding Building Prep for ASTM E3158-18

Category	Envelope (Closed Up)	Operational (In Use)
Natural Ventilation openings	Sealed	Closed and latched
Active or passive smoke control systems	Sealed	As found
Waste or linen handling systems & equipment	Sealed at rooftop chute vent openings	 Rooftop vent = open Chute intake doors = closed Chute intake & discharge room doors = closed & latched Fire dampers = as fnd
Interior doors, hatches, and operable windows inside the test envelope that are normally closed	Open	Closed and latched
Other interior doors	Open	Open
Mechanical ventilation or AC openings	Sealed; equipment with dampers are to have dampers closed and opening sealed	Sealed
Intermittently used mechanical ventilation or AC openings	Sealed	Sealed
Clothes dryer/vent	Sealed	As found; seal vent if dryer is not installed
Windows, doors and roof hatches	Closed & latched	Closed and latched
Solid fuel appliance (ie fireplace)	Dampers closed; chimney sealed	Dampers closed
Openings not intended for ventilation	Sealed; floor drains and plumbing traps filled	Floor drains and plumbing traps filled

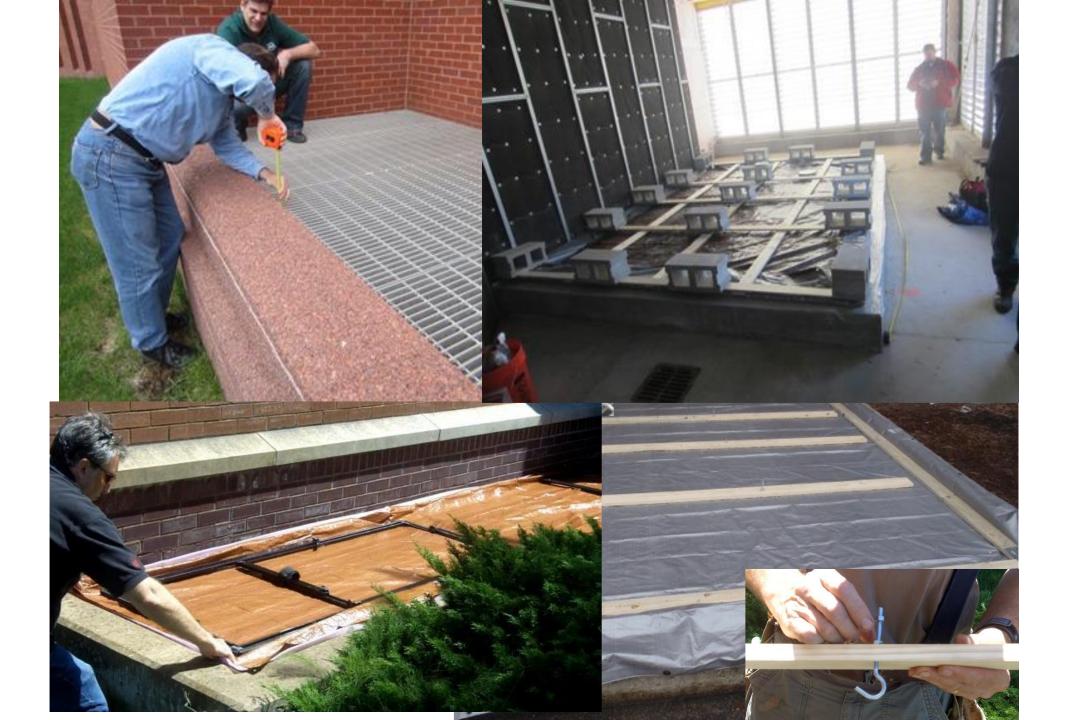
- Block interior doors open
- In occupied buildings this may present an unacceptable security issue

Identify & Seal HVAC Related Enclosure Penetrations

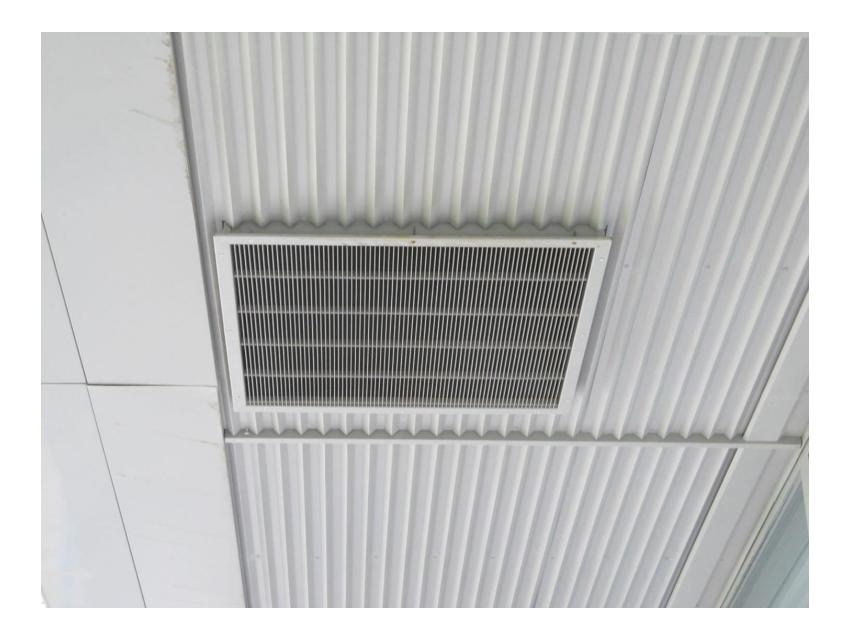
- Outdoor air intakes
- Exhaust systems
- Passive relief
- Steam vents
- Dampers: Motorized, gravity, none
- Fan runs continuously?
- Elevator vents and kitchen range hoods no dampers

Materials for Temporary Sealing

- Adhesive backed carpet protector tape
- Duct mask tape
- Garbage bags
- Light weight sheet goods and tape
- Tarps and straps
- Windex or rubbing alcohol to clean surfaces



Make sure traps have water in them



Final Review of Planning

- New, unoccupied buildings/Occupied buildings
- Identify parties
- Select date
- Identify Test Enclosure Boundaries
- Identify HVAC equipment that must be turned off and penetrations that must be sealed
- Remember Health & Safety, OSHA guidelines
- Test plan must be submitted in advance and affected parties notified

Agenda

- Building Performance and Air Tightness
- Planning a Blower Door Test
- Running a Blower Door Test
- Interpreting Results & Building a Report

Running a Blower Door Test

Process

Similar to SF, software is different

- Envelope pressure measurements
- Interior pressure measurements
- Fan pressure / Flow measurements
- Distribute equipment, Central Command
- Install Fans
- Configurations
 - Tubing, Control, Communication/Network
- TECLOG

Equipment

- Blower Door Fans & Rings
- Frames & Panels
- Controllers
- Gauges
- Tubing
- Networking/communication
- Power
- Other: Door wedges, ladders, sealing materials, tapes, mask, carpet protectors, clenaers, garbage bags

Distribute the Equipment

Setting up Frame and Panel

- Set up frame so it will not pop out
- Secure frame in both directions

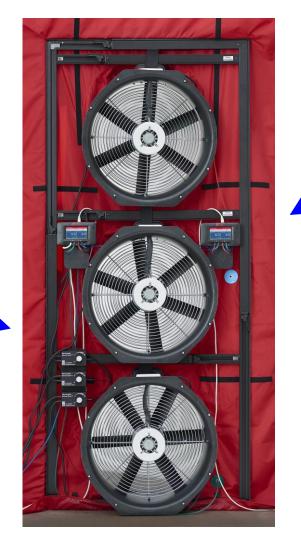
Setting up the Equipment

- Confirm door sizes
- Door closers / security alarms

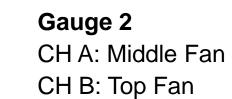
• Prop doors open

Install the Fans

- Pressurize or depressurize first
- Rings or caps


Two Gauges and Three Fans

Gauge 1


CH A: Envelope Press CH B: Bottom Fan

3-way Fan Control Splitter Connected to 3 Controllers

No open taps on gauges

Tubes vs Cables

- Stepping on tubes results in pressure spikes
- Tubes of longer than 100' will cause measurement errors.
- Tubing of a smaller diameter will cause larger measurement errors.
- Sun shining on long lengths of tubing will cause errors, as will anything that causes tubing to change temperature.
- Tubing running vertically through a space at a different temperature than the rest of the building causes errors due to stack effect.

Short tubes and long cables are best

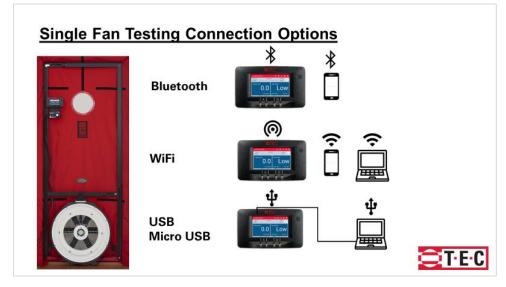
Fan Speed Control: Auto Versus Manual

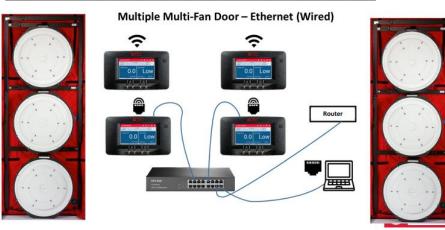
- Manual Control Advantages
 - Better flow precision
 - Lower current draw
 - Eliminates fan speed control cables
- Auto Control Advantages
 - Easier to hit precise targets
 - Can bring all fans up to speed together
 - Interruptions easier to deal with
 - Makes balancing pressures possible
- Hybrid Approach is also Possible

Each fan on its own circuit

- Plug in lower fan
- Run an extension cord for the 2nd fan
- Plug volt meter into this cord
- Turn up 1st fan quickly
- If volts drops by about 2-3 volts, they are on the same circuit
- Repeat with other fans
- You can get by with 2 fans on the same circuit but make sure you have access to breaker box.
- Fans will also have less capacity 4200 CFM75 instead of 4800 CFM75

TECLOG & DG-1000 Networking Options


Networking Options for DG 1000 in Single Fan and Multi-Fan Systems

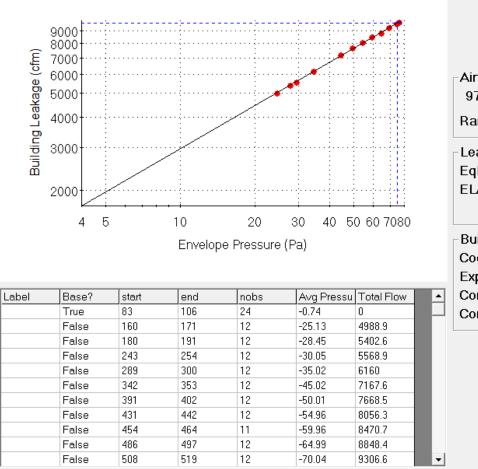

Performance Testing Tools
612.827.1117 www.energyconservatory.com

Available from TEC Website

Multi-Family, Large Building Connection Options

Interior Pressures

- Measure to check for pressure uniformity
 - Identify Suspected Pressure Drops
 - Measure or Monitor Interior pressure differences
 - USACE and ASTM E779 require no two spaces differ by more than 10% of test pressure (wording not clear)


Agenda

- Building Performance and Air Tightness
- Planning a Blower Door Test
- Running a Blower Door Test

• Interpreting Results & Building a Report

Interpreting the Flow vs Pressure Graph

- Flow is on the Y-axis (Vertical)
- Envelope Pressure is on the X-axis (Horizontal)
- Plotted as Log-Log
 - Square relationship between pressure and flow means it should be a straight line on log-log plot
- - Higher is better. 1.0 means all the data points fall perfectly on a straight line
 - Most standards will require values greater than 0.98
- When correlation coefficients are low, it means there are some data points off the line review graph.

			_	
	Reporting Pressure (Pa)	75	•	
	Test to View	test 1	-	
	Test 1: Depressurization			
	Airflow at 75 Pascals			
	9736 cfm +/- 0.5 %			
Range: 9684 to 9788				
	Leakage Areas			
	EqLA (10 Pa) = 870.6 in2 +/- 1.4 % ELA (4 Pa) = 489.6 in2 +/- 2.2 %			
	Building Leakage Curve			
	Coef. (C) = 761.0 cfm/Pa^n +/- 3.4 %			
	Exponent (n) = .590 +/- 0.009			
]	Correlation Coef. (r) = .99977			
Corr Coef Squared (r ²) = .99955				
	View / Edit Test			
	Conditions			
	Export to Tectite Express	;		

OK

How accurate does the test have to be?

- It depends:
 - Just finding holes
 - Just getting a rough idea
 - Testing to a specific leakage rate

Sources of Uncertainty in Airtightness Testing

- Error in pressure difference across the shell
- Error in flow measurements
- Error in normalizing to volume or enclosure area
- Error in setting up building

A Word of Advice

• Always check your data before you tear down

Make Sure It Isn't Your Fault

- Check your data
- Compare envelope pressures
- Correct ring selection
- Correct reporting pressure
- Correct temperatures and elevation

Compare Envelope Pressures

- On calm days the pressures should be within a couple of Pascals of each other
- On windy days there may be 20 or more Pascals difference
- Check for tubing and connection problems

Whole Building Blower Door Testing

- Building Performance and Air Tightness
- Planning a Whole Building Blower Door Test
- Running a Whole Building Blower Door Test
- Interpreting Results & Building a Report

Thank you