How NOT to Do Electrification

Ken Neuhauser, Chris Kennedy – Building Evolution Corporation Kimberly Llewellyn – Mitsubishi Electric Trane HVAC US LLC

PhiusCon, November 2023

© 2023 BEC

Agenda

- ➢Introductions
- ➢Orientation
- Case Studies (choose your own adventure?)
- Recurring problems and Common Pitfalls
- Sizing and humidity control matters
- ➢How to avoid these pitfalls? (Open discussion)

Who are you? And why are you here?

Designers/Architects?

- **D**Engineers?
- Consultants?
- Builders?
- Developers?
- Advocates?
- □Students?

□Volunteer who got roped into proctoring this session?

Orientation

Managing the Rush to Electrification

© 2023 BEC

What does electrification mean to

What does electrification mean?

© 2023 BEC

Standard fare:

© 2023 BEC

Heat: Gas boilers, hydronic baseboard
 Cooling: Through-wall AC (on the resident)
 DHW: gas boilers and storage tank
 Ventilation: Gas-fired make-up air unit (to corridor), exhaust from kitchens and baths

What does electrification mean?

Property Acquired 2019 with plan to:

Maintain as 100% affordable senior housing

Rehab all units to "like new"

Refresh amenity spaces

© 2023 BEC

>Allow all residents to remain in place

What does electrification mean?

What does electrification mean?

© 2023 BEC

First Pass "Decarbonization" Plan

What does electrification mean?

© 2023 BEC

Initial Decarbonization Narrative

Heat: Gas boilers, hydronic baseboard **Cooling:** Through-wall AC (on the resident) **DHW:** gas boilers and storage tank > Ventilation: Gas-fired make-up air unit (to corridor), exhaust from kitchens and baths

What does electrification mean?

© 2023 BEC

Initial Decarbonization Narrative – Heating

Option 1: 1-to-1 heat pump Demo existing PTAC, use existing electric for heat pump Retain gas heating boilers and baseboard distribution for supplemental heat **Option 2: Electric boilers** Demo existing gas-fired hot water boilers • Provide (2) 175 kW hot water boilers

What does electrification mean?

© 2023 BEC

Initial Decarbonization Narrative – Heating

Electrical Service Upgrade for Electric Boilers:

Electrical

© 2023 BEC

- a) This replacement would require an electric service upgrade on ground that this equipment is currently estimated to be 972amps (350kW) of new connected load to the building at 208y/120 service.
- b) It is required that the electrical service be upgraded to accommodate the new equipment.
 - This would require at least (1) existing parking space to be used to install a new exterior main switchboard at estimated 2500 amp at 208Y/120 with a back feed the existing 2000amp 208Y/120.

What does electrification mean?

Initial Decarbonization Narrative – Heating

Electrical Service Upgrade for Electric Boilers:

Electrical

© 2023 BFC

a) This replacement would require an electric service upgrade on ground that this

This would require at least (1) existing parking space to be used to install a new exterior main switchboard at estimated 2500 amp at 208Y/120 with a back feed the existing 2000amp 208Y/120.

 This would require at least (1) existing parking space to be used to install a new exterior main switchboard at estimated 2500 amp at 208Y/120 with a back feed the existing 2000amp 208Y/120.

What does electrification mean?

Initial Decarbonization Narrative – DHW

What does electrification mean?

© 2023 BEC

Initial Decarbonization Narrative – DHW

Electrical Service Upgrade for Electric DHW:

Electrical

© 2023 BEC

a) This replacement would require an electric service upgrade on ground that this

This would require at least (1) existing parking space to be used to install a new exterior main switchboard at estimated 2500 amp at 208Y/120 a back feed the existing 2000amp 208Y/120.

 This would require at least (1) existing parking space to be used to install a new exterior main switchboard at estimated 2500 amp at 208Y/120 a back feed the existing 2000amp 208Y/120.

What does electrification mean?

Initial Decarbonization Narrative – Ventilation

Ventilation: Electric Resistance Make-Up Air Unit Demo existing gas-fired MAU and remove gas piping Provide new electric heating-only constant volume MAU sized for 10,000 cfm

What does electrification mean?

© 2023 BEC

Initial Decarbonization Narrative – Ventilation

Electrical Service Upgrade for Electric MAU:

Electrical

© 2023 BFC

a) This replacement would require an electric service upgrade on the grounds that this This would require at least (1) existing parking space to be used to install a new exterior main switchboard at estimated 2500 amp at 208Y/120 with a back feed the existing 2000amp 208Y/120.

equipment.

 This would require at least (1) existing parking space to be used to install a new exterior main switchboard at estimated 2500 amp at 208Y/120 with a back feed the existing 2000amp 208Y/120.

What does electrification mean?

First Pass "Decarbonization" Plan

What does electrification mean?

BUILDING EVOLUTION CORPORATION Achieve Performance & Durability Through A Holistic ApproachTM

© 2023 BEC

What do we need from electrification?

Goal: to REDUCE load on the grid

 If electrification imposes new peaks on the grid, problems
 Equity issues with winter electric peak:

 those stuck heating with gas face even higher costs,

generation competes with heating

What does electrification mean?

© 2023 BEC

BUILDING EVOLUTION CORPORATION

Achieve Performance & Durability Through A Holistic ApproachTM

What do we need from electrification?

What does electrification mean?

© 2023 BEC

Case Studies

Interviews with the first penguins (Just a few)

© 2023 BEC

DISCLOSURE:

The projects that we are about to discuss were

(Found Unwell on Arrival)

BEC bears no responsibility for any bad practices or unfortunate outcomes you are about to see.

© 2023 BEC Case study introduction

BUILDING EVOLUTION CORPORATION

Achieve Performance & Durability Through A Holistic ApproachTM

Mid-Rise Multifamily, New Construction

•••••••

High-performance Design

What could go wrong ...?

Mid-Rise Multifamily, New Construction

© 2023 BEC

BUILDING EVOLUTION CORPORATION

Achieve Performance & Durability Through A Holistic ApproachTM

(De)Value Engineering Time! Choose your next move:

Path A:

Remove heat recovery from VRF system (changeover VRF)

Path B:

Remove energy recovery ventilation (outdoor air ducted to FCUs)

© 2023 BEC

Mid-Rise Multifamily, New Construction

Design Team Answer: Path B

Un-tempered Outdoor Air (OA)

© 2023 BEC Mid-Rise Multifamily, New Construction

Ventilation Design

- 75 CFM OA ducted to FCU return plenum (2-bedroom)
- 30 CFM continuous Exhaust Air (EA) from bathroom
 - 110 CFM boost function

© 2023 BEC

• 270 CFM intermittent kitchen EA

Mid-Rise Multifamily, New Construction

Ventilation Design

- OA controlled with Volume Damper (VD)
- No volume control at central return

Designed OA CFM +

© 2023 BEC

= Delivered OA CFM

Mid-Rise Multifamily, New Construction

Humidity

© 2023 BEC

Functional Testing Conditions:

- Outdoor Temp: 78-80 F
- Outdoor Dewpoint: 68 F
- Indoor Temp: 68-70 F

Condensation on plumbing

Mid-Rise Multifamily, New Construction

BUILDING EVOLUTION CORPORATION Achieve Performance & Durability Through A Holistic ApproachTM

Symptoms

© 2023 BEC

- Poor humidity control
- High energy bills
- Premature component failure

Mid-Rise Multifamily, New Construction

BUILDING EVOLUTION CORPORATION Achieve Performance & Durability Through A Holistic ApproachTM

Reliance on electric resistance heating

Electric CUH, MAU with duct heater, exhaust dryers

© 2023 BEC

- Trash rooms •
- Entryways ٠
- Stairwells ٠
- Exhaust dryers •
- Laundry makeup air units •

Exhaust-only ventilation in trash room, heated with electric CUH

Mid-Rise Multifamily, New Construction

BUILDING EVOLUTION CORPORATION

Achieve Performance & Durability Through A Holistic ApproachTM

Case 1: Mid-Rise Multifamily, New Construction

Applied heat load calculation misinformation

Component	MEP HL Calc Assumption	Designed Value	
Roof	R-25	R-32	
Wall	R-22	R-22	
Slab	R-10	R-10	
Window	U-0.4	U-0.27	

Equipment Assumptions

DeR - Derated Heating requirement (60% derate at 0F)

Mid-Rise Multifamily, New Construction

© 2023 BEC

BUILDING EVOLUTION CORPORATION Achieve Performance & Durability Through A Holistic ApproachTM

Case 1: Mid-Rise Multifamily, New Construction

Applied heat load calculation misinformation

Component	MEP HL Calc Assumption	Designed Value	
Roof	R-25	R-32	
Wall	R-22	R-22	
Slah	D 10	D 10	

(60% derate at 0F)

Mid-Rise Multifamily, New Construction

© 2023 BEC

BUILDING EVOLUTION CORPORATION Achieve Performance & Durability Through A Holistic ApproachTM

Choose your next move:

Path A: Very lowambient capacity VRF

PURY-HP192TSNU (Hyper Heat) Capacity Table

© 2023 BEC

Path B: High-efficiency low-ambient capacity VRF

PURY-EP192TSNU (High-Efficiency) Capacity Table

Mid-Rise Multifamily, New Construction

Design Team Answer:

- Higher equipment cost
- Lower efficiency

© 2023 BEC

• Recommended by manufacturer for very cold climates

Path B: High-efficiency low-ambient capacity VRF

- Lower equipment cost
- Higher efficiency
- Recommended by manufacturer for local design conditions

Mid-Rise Multifamily, New Construction
Oversizing Indoor Equipment

Space	MEP HL Calc (Btu/hr)	Equipment Size (Btu/hr)	BEC HL Calc (Btu/hr)	% Difference (Cap vs. actual HL)	
2-Bd, FCU-1	18,117	20,000	8,974	55%	
2-Bd, FCU-2	24,717	27,000	13,756	49%	
2-Bd, FCU-3	27,301	32,000	9,248	71%	
3-Bd, FCU-3	29,699	32,000	17,203	46%	
3-Bd, FCU-4	34,526	40,000	18,153	55%	

Mid-Rise Multifamily, New Construction

© 2023 BEC

BUILDING EVOLUTION CORPORATION Achieve Performance & Durability Through A Holistic ApproachTM

Block Heating Load Calculation

MEP Calc: Apts. Only 88.6 tons BEC Calc: Apts. Only 52.3 tons Whole building 67.4 tons

Total Installed Building Heating Capacity: 121 tons

Mid-Rise Multifamily, New Construction

BUILDING EVOLUTION CORPORATION Achieve Performance & Durability Through A Holistic ApproachTM

© 2023 BEC

Choose your next move:

Apply a diversity factor for outdoor equipment:

A: <100% B: 110% C: >125%

© 2023 BEC

Diversity factor: Ratio of indoor equipment capacity to outdoor equipment capacity

Mid-Rise Multifamily, New Construction

Design Team Answer:

Apply a diversity factor for outdoor equipment:

© 2023 BEC

Diversity factor: Ratio of indoor equipment capacity to outdoor equipment capacity

Mid-Rise Multifamily, New Construction

No load diversity applied

© 2023 BEC

Indoor Equipment	MEP HL Calc (MBH)	Qty.	Total Load (MBH)	Outdoor Equipme	MEP HL Capacity
Apt, FCU-1	20	1	20	nt	(MBH)
Apt, FCU-2	27	17	459	HP-1	215
Apt, FCU-3	32	12	384	HP-2	215
Apt, FCU-4	40	9	360	HP-3	270
Common, FCU-5	13.5	8	108	HP-4	215
Common. FCU-6	20	3	60	HP-5	270
Common. FCU-7	28	1	28	HP-6	215
Total		_	1419	HP-7	54
			1415	Total	1454

Mid-Rise Multifamily, New Construction

How did first winter electric bills compare to anticipated?

A: About the same B: $1.5 \times$ C: $2 \times$ D: $2 \times$

D: 2.5 x

© 2023 BEC

Mid-Rise Multifamily, New Construction

How did first winter electric bills compare to anticipated?

© 2023 BEC

\$30-40k/Month
200 kW demand charge
\$0.48/kWh (blended)
Funding risk for phase 2!

Mid-Rise Multifamily, New Construction

BUILDING EVOLUTION CORPORATION

Historic Church, HVAC Replacement

Symptoms

© 2023 BEC

- High energy bills
- Premature component failure
- Temperature not maintained

Historic Church, HVAC Replacement

Electric Resistance Heating

ELECTRIC DUCT HEATER SCHEDULE (EDH)												
MARK	SERVES	MAKE	MODEL	SIZE (W x H)	CFM	EAT	LAT	KW	VOLT/PH	AMPS	CONTROL	NOTES
EDH-1	ERV-1 POSTHEAT	QMARK	FC/SC (OPEN COIL)	24x14	1,425	46.9	73.5	<mark>12.0</mark>	208/3	33.3	HYBRID	1,2
EDH-2												
EDH-3												
EDH-4	ERV-4 POSTHEAT	QMARK	FC/SC (OPEN COIL)	12X12	750	46.0	71.3	<mark>6.</mark> 0	208/3	16.6	SCR	1,2
EDH-5	ERV-5 PREHEAT	QMARK	FC/SC (OPEN COIL)	20x8	700	0.0	27.1	<mark>6.0</mark>	208/3	16.6	SCR	1,2
EDH-6	ERV-6 PREHEAT	QMARK	FC/SC (OPEN COIL)	20x12	950	0.0	26.6	<mark>8.</mark> 0	208/3	22.2	SCR	1,2
EDH-7	ERV-7 PREHEAT	QMARK	FC/SC (OPEN COIL)	10x8	325	0.0	29.2	<mark>3.</mark> 0	208/3	8.3	SCR	1,2
EDH-8	VRF-IN-1-8 2ND STAGE	QMARK	FC/SC (OPEN COIL)	14X14	800-990	68.0	93.5	<mark>8.0</mark>	208/3	22.2	SCR	1,2
EDH-9	VRF-IN-2-1 2ND STAGE	QMARK	FC/SC (OPEN COIL)	24X12	1260-1475	68.0	88.1	<mark>8.0</mark>	208/3	22.2	SCR	1,2
EDH-10	VRF-IN-2-2 2ND STAGE	QMARK	FC/SC (OPEN COIL)	24X12	1260-1475	68.0	88.1	<mark>8.0</mark>	208/3	22.2	SCR	1,2
EDH-11	VRF-IN-3-1 2ND STAGE	QMARK	FC/SC (OPEN COIL)	16X16	1260-1475	68.0	118.2	<mark>20.0</mark>	208/3	55.5	HYBRID	1,2
EDH-12	VRF-IN-3-2 2ND STAGE	QMARK	FC/SC (OPEN COIL)	16X16	1260-1475	68.0	118.2	<mark>20.0</mark>	208/3	55.5	HYBRID	1,2
EDH-13	VRF-IN-3-3 2ND STAGE	QMARK	FC/SC (OPEN COIL)	12X12	480-710	68.0	112.5	<mark>10.0</mark>	208/3	27.8	SCR	1,2
EDH-14	VRF-IN-4-1 2ND STAGE	QMARK	FC/SC (OPEN COIL)	16X16	1260-1475	68.0	118.2	<mark>20.0</mark>	208/3	55.5	HYBRID	1,2
EDH-15	VRF-IN-4-2 2ND STAGE	QMARK	FC/SC (OPEN COIL)	24X12	1260-1475	68.0	118.2	<mark>20.0</mark>	208/3	55.5	HYBRID	1,2
EDH-16	VRF-IN-5-6 2ND STAGE	QMARK	FC/SC (OPEN COIL)	16X16	1000-1400	68.0	131.2	<mark>20.0</mark>	208/3	55.5	HYBRID	1,2
NOTES:												
1. AIRFLOW SWITCH, DOOR INTERLOCKING DISCONNECT, DUCT THERMOSTAT												
2. PER MANUFACTURER'S INSTRUCTIONS, HEATER SHOULD NOT BE INSTALLED CLOSER THAN 18" DOWNSTREAM FROM A FAN OUTLET OR 24" UPSTREAM FROM ANY TAKE-OFFS, TRANSITIONS OR ELBOWS IN THE DUCTWORK												

Historic Church, HVAC Replacement

© 2023 BEC

BUILDING EVOLUTION CORPORATION

Electric Resistance Heating

IN THE ZONES WITH SECOND STAGE ELECTRIC DUCT HEATERS OR SECOND STAGE ELECTRIC BA	ASEBOARD
(VRF-IN-1-8, VRF-IN-2-1, VRF-IN-2-2, VRF-IN-3-1, VRF-IN-3-2, VRF-IN-3-3, VRF-IN-	-4—1, VRF—IN—4—2,
VRF-IN-5-6, VRF-IN-6-1, VRF-IN-6-4) IF THE ASSOCIATED THERMOSTAT (OR TEMPERATUR	E SENSOR) SENSES
THAT THE SPACE TEMPERATURE HAS DROPPED 3"F BELOW SET POINT THE THERMOSTAT SHAL	L ENERGIZE THE
SECOND STAGE ELECTRIC ELEMENT. THE VRF SYSTEM SHALL CONTINUE TO OPERATE WHILE TH	E SECOND STAGE
HEAT IS OPERATING.	

EDH-7	ERV-7 PREHEAT	QMARK	FC/SC (OPEN COIL)	10x8	325	0.0	29.2	<mark>3.</mark> 0	208/3	8.3	SCR	1,2
EDH-8	VRF-IN-1-8 2ND STAGE	QMARK	FC/SC (OPEN COIL)	14X14	800-990	68.0	93.5	<mark>8.0</mark>	208/3	22.2	SCR	1,2
EDH-9	VRF-IN-2-1 2ND STAGE	QMARK	FC/SC (OPEN COIL)	24X12	1260-1475	68.0	88.1	<mark>8.0</mark>	208/3	22.2	SCR	1,2
EDH-10	VRF-IN-2-2 2ND STAGE	QMARK	FC/SC (OPEN COIL)	24X12	1260-1475	68.0	88.1	<mark>8.0</mark>	208/3	22.2	SCR	1,2
EDH-11	VRF-IN-3-1 2ND STAGE	QMARK	FC/SC (OPEN COIL)	16X16	1260-1475	68.0	118.2	20.0	208/3	55.5	HYBRID	1,2
EDH-12	VRF-IN-3-2 2ND STAGE	QMARK	FC/SC (OPEN COIL)	16X16	1260-1475	68.0	118.2	20.0	208/3	55.5	HYBRID	1,2
EDH-13	VRF-IN-3-3 2ND STAGE	QMARK	FC/SC (OPEN COIL)	12X12	480-710	68.0	112.5	<mark>10.0</mark>	208/3	27.8	SCR	1,2
EDH-14	VRF-IN-4-1 2ND STAGE	QMARK	FC/SC (OPEN COIL)	16X16	1260-1475	68.0	118.2	20.0	208/3	55.5	HYBRID	1,2
EDH-15	VRF-IN-4-2 2ND STAGE	QMARK	FC/SC (OPEN COIL)	24X12	1260-1475	68.0	118.2	20.0	208/3	55.5	HYBRID	1,2
EDH-16	VRF-IN-5-6 2ND STAGE	QMARK	FC/SC (OPEN COIL)	16X16	1000-1400	68.0	131.2	20.0	208/3	55.5	HYBRID	1,2
NOTES:												
1. AIRFLOW SWITCH, DOOR INTERLOCKING DISCONNECT, DUCT THERMOSTAT												

2. PER MANUFACTURER'S INSTRUCTIONS, HEATER SHOULD NOT BE INSTALLED CLOSER THAN 18" DOWNSTREAM FROM A FAN OUTLET OR 24" UPSTREAM FROM ANY TAKE-OFFS, TRANSITIONS OR ELBOWS IN THE DUCTWORK

Historic Church, HVAC Replacement

© 2023 BEC

BUILDING EVOLUTION CORPORATION Achieve Performance & Durability Through A Holistic ApproachTM

NOTES

1.2

1,2

1.2

1,2

ONTROL

HYBRID

SCR SCR

SCR

Electric Resistance Heating

© 2023 BEC

It's time for a ... Quiz Question!

Which outdoor unit is not working?

© 2023 BEC

Is it A? \leftarrow

Or is it B?

Historic Church, HVAC Replacement

Answer: Trick question!

© 2023 BEC

This one is working poorly ← This one is dead!

Historic Church, HVAC Replacement

What's wrong with this replacement valve?

GLG

© 2023 BEC Historic Church, HVAC Replacement

Failing or Inoperable Equipment

Historic Church, HVAC Replacement

© 2023 BEC

BUILDING EVOLUTION CORPORATION

It's time for another ... Quiz Question!

How should refrigerant branches be oriented?

A: Vertical

B: Horizontal

BUILDING EVOLUTION CORPORATION Achieve Performance & Durability Through A Holistic ApproachTM

© 2023 BEC Historic Church, HVAC Replacement

Answer:

A: Vertical

BUILDING EVOLUTION CORPORATION Achieve Performance & Durability Through A Holistic ApproachTM

Historic Church, HVAC Replacement

© 2023 BEC

© 2023 BEC

BUILDING EVOLUTION CORPORATION Achieve Performance & Durability Through A Holistic ApproachTM

Historic Church, HVAC Replacement

© 2023 BEC

Historic Church, HVAC Replacement

Historic Church, HVAC Replacement

© 2023 BEC

Historic Church, HVAC Replacement

© 2023 BEC

Poor installation – Wiring

© 2023 BEC

Historic Church, HVAC Replacement

Poor installation – Condensate

Historic Church, HVAC Replacement

© 2023 BEC

Early 2000s, Mid-Rise, Affordable Senior Housing, HVAC Retrofit

Initial Decarbonization Narrative

Heat: Gas boilers, hydronic baseboard **Cooling:** Through-wall AC (on the resident) **DHW:** gas boilers and storage tank > Ventilation: Gas-fired make-up air unit (to corridor), exhaust from kitchens and baths

What does electrification mean?

© 2023 BEC

Developing Options - DHW

What about central heat pump water heater? >Mitsubishi QAHV suitable ...but not well supported in region >Indoor equipment unitized on skid > Building requires 2 skids – no room in existing mech room

Senior Housing Retrofit

© 2023 BEC

BUILDING EVOLUTION CORPORATION

Choose your next move:

Path A:

Use central Heat Pump water heater: Take space from community room to expand mechanical room

Path B:

Retain gas heating boilers and DHW storage tank

Senior Housing Retrofit

© 2023 BEC

Design Team Answer:

Path A:

Use central Heat Pump water heater: Take space from community room to expand mechanical room

Developing Options – DHW

© 2023 BEC Senior Housing Retrofit

Developing Options – DHW

© 2023 BEC Senior Housing Retrofit

BUILDING EVOLUTION CORPORATION

Developing Options – Ventilation

© 2023 BEC Senior Housing Retrofit

BUILDING EVOLUTION CORPORATION

Achieve Performance & Durability Through A Holistic Approach™

Developing Options – Ventilation

© 2023 BEC Senior Housing Retrofit

Developing Options – Ventilation

© 2023 BEC Senior Housing Retrofit

Case 3: Developing Options – Ventilation

BEC Proposed: ERV

- High efficiency
- Dx coil for final tempering and <u>dehumidification</u>
- Gather existing exhaust risers to ERV return

Design Team Counters:

© 2023 BEC

>non-compliant exhaust risers

>BUT! We could use a heat pump make up air unit

Case 3: Senior Housing Retrofit

Choose your next move:

Path A:

Use High Efficiency ERV: Demo ceilings to install fire/smoke damper and ductwork at each toilet exhaust

Path B:

Go back with 100% outdoor air make-up air unit (MAU) that has heat pump heating

Senior Housing Retrofit

© 2023 BEC
Developing Options – Ventilation

Design decision: MAU with heat pump and electric resistance pre-heat Heat Pump needs ~ 40F entering air temp **Electric resistance pre-heats to protect Heat** Pump

© 2023 BEC Senior Housing Retrofit

BUILDING EVOLUTION CORPORATION

Does a Heat Pump Make it Better?

mp Heat Pum MAU	Gas-Fired MAU (No Energy
rgy (w/Energ ery Recovery	() Recovery)
18%	13%
49%	26% 13%
	49% 23%

© 2023 BEC Senior Housing Retrofit

BUILDING EVOLUTION CORPORATION

Mid-Rise Multifamily, Senior Living, New Construction

Mid-Rise, Senior Living, New Construction

Problems:

© 2023 BEC

- Poor comfort
- High operational cost

Mechanisms for Problems

➢Poor enclosure

➢VRF Discharge Air Temp

Poorly conceived and executed Ventilation

© 2023 BEC Mid-Rise, Senior, New Construction

BUILDING EVOLUTION CORPORATION

Mechanisms for Problems

➢ Poor enclosure WHAT PART OF "SENIOR" DON'T YOU UNDERSTAND?

► VRF Discharge Air Temp

Poorly conceived and executed Ventilation

© 2023 BEC Mid-Rise, Senior, New Construction

SILBONIT OR TRESPA PANELS, SEE ELEVATIONS FOR EXTENT OF SYSTEM ERTICAL Z-FURRING SCREWED TO PRECAST CONCRETE WALL, TYP. 1/2" x 1/2" DRIP BACKER ROD AND SEALANT BACKER ROD AND SEALANT BUILDING EVOLUTION CORPORATION

DOUBLE BACKER ROD AND SEALANT

HOLLOWCORE PRECAST PLANK

10" PRECAST CONC WALL, SEE PLANS WALL ASSEMBLY TYPES, & ERECTION ALUMINUM CLAD WOOD WINDOW, SEE

PAINTED MDF STOOL AND APRON

PAINTED MDF BASE TRIM SEALANT AND BACKER ROL

SEALANT AND BACKER ROD SPRAY FOAM INSUL, TYP

FILL CAVITY

WINDOW SCHEDULE SEALANT AND BACKER ROD

SEALANT

Poorly Conceived, Poorly executed Ventilation

Unconditioned OA

≻~60% eff ERV

ERV supply MIXED with outdoor air

Preconditioned OA

© 2023 BEC Mid-Rise, Senior, New Construction

Poorly Conceived, Poorly executed Ventilation

Cool ventilation air discharged to heads

Compensate by increasing set point for gas-fired Make-up Air Unit (MAU)

© 2023 BEC Mid-Rise, Senior, New Construction

√~ 100 y.o.

✓ Walking distance to downtown

➢ Major renovation

© 2023 BEC Small scale retrofit

BUILDING EVOLUTION CORPORATION

Choose your next move:

Path A:

Install Heat Pumps to get heating off fossil fuels

Path B:

Retrofit a robust air and water barrier and install thick continuous exterior insulation

© 2023 BEC Small scale retrofit

Project Direction Observed

© 2023 BEC Small scale retrofit

Project Direction Observed

© 2023 BEC Small scale retrofit

© 2023 BEC Small scale retrofit

BUILDING EVOLUTION CORPORATION

Observations (On Every Street)

© 2023 BEC Small scale retrofit

Observations (On Every

© 2023 BEC Small scale retrofit

© 2023 BEC Small scale retrofit

BUILDING EVOLUTION CORPORATION Achieve Performance & Durability Through A Holistic ApproachTM

BRING ON THE ELEMENTS.

- Yes, it's handsome but...
- missed opportunity to
- Significantly reduce loads
- >Improve durability
- Increase resilience
- Set the stage for better air quality

© 2023 BEC Small scale retrofit

BUILDING EVOLUTION CORPORATION

- Yes, it's handsome but...
- missed opportunity to
- Significantly reduce loads
- >Improve durability
- ➢Increase resilience
- Set the stage for better air quality

© 2023 BEC Small scale retrofit

BUILDING EVOLUTION CORPORATION

Yes, it's handsome but...

- missed op But is this opportunity common?
 >Significantly reduce loads
- >Improve durability
- >Increase resilience
- Set the stage for better air quality

© 2023 BEC Small scale retrofit

BUILDING EVOLUTION CORPORATION

© 2023 BEC Small scale retrofit

© 2023 BEC Small scale retrofit

Small scale retrofit © 2023 BEC

BUILDING EVOLUTION CORPORATION

© 2023 BEC Small scale retrofit

BUILDING EVOLUTION CORPORATION

© 2023 BEC Small scale retrofit

Small scale retrofit © 2023 BEC

BUILDING EVOLUTION CORPORATION

© 2023 BEC Small scale retrofit

© 2023 BEC Small scale retrofit

BUILDING EVOLUTION CORPORATION

Small scale retrofit © 2023 BEC

BUILDING EVOLUTION CORPORATION

© 2023 BEC Small scale retrofit

BUILDING EVOLUTION CORPORATION

© 2023 BEC Small scale retrofit

© 2023 BEC Small scale retrofit

© 2023 BEC Small scale retrofit

BUILDING EVOLUTION CORPORATION

© 2023 BEC

Small scale retrofit

What are we missing?

Small scale retrofits represent opportunity to...

- Reduce loads on grid (equity, societal infrastructure cost)
- Decarbonize regardless of heating strategy
- >Improve durability (protect embodied carbon)
- Increase resilience, comfort
- Set the stage for better air quality

© 2023 BEC Small scale retrofit
Common Pitfalls, Recurring Challenges

This stuff just keeps happening!

© 2023 BEC

Entrenched Habits

- Not understanding the Technology / Applied misinformation
- ➢Workmansh#t
- Devalue Engineering
- ➢Blindspots

© 2023 BEC Pitfalls and Challenges

Entrenched Habits

© 2023 BEC

- "Rule of Dumb" sizing
- Ignoring load diversity in sizing
- Assuming cooling = dehum.
- We don't need ERV/HRV
- Assume heat pumps derate in cold climates

(60% derate at 0F)

Pitfalls and Challenges

- Not understanding the Technology / Applied misinformation
 - Equipment not appropriate for climate
 - Assume heat pumps don't work in cold climates
 - Ignoring high-performance enclosure
 - Assuming cooling = dehum.
 - Assume heat pumps derate in cold climates
 - Ignoring load diversity in sizing

Pitfalls and Challenges

© 2023 BEC

BUILDING EVOLUTION CORPORATION

➢Workmansh#t

© 2023 BEC

- Refrigerant traps
- Bad connections
- Pipes/linesets left open to atmosphere

Pitfalls and Challenges

BUILDING EVOLUTION CORPORATION

- Devalue Engineering
 - Not including highest efficiency recovery on ventilation
 - Non-heat recovery VRF
 - Not doing Cx
 - Pull back on enclosure performance
- ➢Blind spots

© 2023 BEC

Missing enclosure opportunities

Pitfalls and Challenges

- Entrenched Habits
- Not understanding the Technology / Applied misinformation
- ➤Workmansh#t
- Devalue Engineering
- ➢Blindspots

© 2023 BEC

Over-sized systems

- OShortened equipment life
- ○High bills
- • Poor humidity control
- \circ Poor comfort
- Unnecessary reliance on back-up systems
- \circ Refrigerant leaks
- Increased operational carbon

Pitfalls and Challenges

- ► Entrenched Habits
- Not understanding the Technology / Applied misinformation
- ➤Workmansh#t
- Devalue Engineering
- ➢Blindspots

© 2023 BEC

Over-sized systems Shortened equipment life • High bills OPoor humidity control ○ Poor comfort Unnecessary reliance on back-up systems • Refrigerant leaks Increased operational carbon

Pitfalls and Challenges

- ► Entrenched Habits
- Not understanding the Technology / Applied misinformation
- ≻Workmansh#t
- Devalue Engineering
- ➢Blindspots

© 2023 BEC

Over-sized systems Shortened equipment life → O High bills OPoor humidity control ○ Poor comfort • Unnecessary reliance on back-up systems • Refrigerant leaks

OIncreased operational carbon

Pitfalls and Challenges

BUILDING EVOLUTION CORPORATION

- ► Entrenched Habits
- Not understanding the Technology / Applied misinformation
- ≻Workmansh#t
- Devalue Engineering
- ➢ Blindspots

© 2023 BEC

Over-sized systems • Shortened equipment life •• High bills OPoor humidity control ○ Poor comfort OUnnecessary reliance on back-up systems • Refrigerant leaks

OIncreased operational carbon

Pitfalls and Challenges

BUILDING EVOLUTION CORPORATION

- ► Entrenched Habits
- Not understanding the Technology / Applied misinformation
- ➤Workmansh#t
- ➢ Devalue Engineering
- ➢Blindspots

© 2023 BEC

Over-sized systems • Shortened equipment life →○ High bills •• Poor humidity control ○ Poor comfort OUnnecessary reliance on back-up systems • Refrigerant leaks

OIncreased operational carbon

Pitfalls and Challenges

BUILDING EVOLUTION CORPORATION

- \succ Entrenched Habits
- >Not understanding the Technology / **Applied misinformation**

- ➤Workmansh#t
- Devalue Engineering
- ➢ Blindspots

© 2023 BEC

Over-sized systems Shortened equipment life • High bills Poor humidity control

○ Poor comfort

OUnnecessary reliance on back-up systems

• Refrigerant leaks

Increased operational carbon

Pitfalls and Challenges

Humidity Ratio Grains/Lb da

WHY 80 CFM? SPLIT THE DIFFERENCE

4.1.1 Total Ventilation Rate. The total required ventilation rate (Q_{tot}) shall be as specified in Table 4.1a or Table 4.1b or, alternatively, calculated using Equation 4.1a or Equation 4.1b.

$$Q_{tot} = 0.03A_{floor} + 7.5(N_{br} + 1)$$
 (I-P) (4.1a)

where

 Q_{tot} = total required ventilation rate, cfm A_{floor} = dwelling-unit floor area, ft² N_{br} = number of bedrooms (not to be less than 1)

Required CFM 2,000 ft², 3 br home

= 0.03cfm * 2,000 ft² + 7.5cfm * (1+3)

= 90 cfm -20 cfm infiltration credit @3ACH50

= 70 cfm

2000 FT² HOUSE WITH 9' CEILINGS HAS A VOLUME OF 18,000 FT³

PARTIAL LOAD (think "SHOULDER" or "SWING SEASON") HRS/YR

COOLING & HEATING

HUMID PARTIAL LOAD HRS/YR

50-80°F DB & >65 grains/Lb da

IS IT A PROBLEM?

Daily Latent Load @ 80 cfm (Pints/Day)

FREQUENCY AND MAGNITUDE

Hrs 50-80 & >65gr/lb
A Daily Latent Load @ 80 cfm (Pints/Day)

How Much Is Coming In?

SUBISH

ARLINGTON PEAK LOAD CONDITIONS= 88 HRS/YR

DESIGN CONDITIONS: 92°F DRY BULB/74.7°F WET BULB

Scope	Net Ton	ft.² /Ton	Area	Sen Gain	Lat Gain	Net Gain	Sen Loss
🖻 Building	1.61	1,932	3,102	13,948	5,317	19,265	15,116
System 1	0.84	1,867	1,561	7,476	2,558	10,034	7,835
Ventilation				466	1,258	1,725	686
E Zone 1			1,561	7,010	1,300	8,310	7,149
1-Entry			128	143	0	143	332
2-Laundry			195	791	0	791	890
3-Office			164	1,422	200	1,622	1,291
4-Bath 1			45	25	0	25	116
5-Utility			64	0	300	300	6
6-Kitchen / Lr / Dr			869	4,275	800	5,075	4,083
19-Lower Stairs			96	354	0	354	431
System 2	0.77	2,003	1,541	6,472	2,758	9,231	7,281
Ventilation				466	1,258	1,725	686
E Zone 1			1,541	6,006	1,500	7,506	6,595
7-Bedroom 3			144	734	200	934	905
8-Bedroom 3 Closet			46	92	0	92	171
9-Bedroom 4			170	885	200	1,085	1,059
10-Bath			63	105	100	205	82
11-Bedroom 4 Closet			46	92	0	92	171
12-Utility			29	434	0	434	110
13-Hall			117	158	0	158	152
14-Guest			166	1,102	400	1,502	1,030
15-Guest Bath			100	354	100	454	449
16-Master Bath			168	247	100	347	218
17-Master Closet			106	236	0	236	433
18-Master Bedroom			290	1,403	400	1,803	1,562
20-Upper Stairs			96	164	0	164	253

SENSIBLE HEAT RATIO= 0.72

PARTIAL LOAD DESIGN CHECK

1-20201		0005000	RKWKWKW	111111	1000	X	X /UX	4		XX	NP	
North America		~	[10	Elevat	ion f	t					¢ €
USA		~	Save	38.9	Latitu	de N	orth			Us	e Exte	rnal Data
Virginia		~	Location	77.0	Longi	tude	West					
Washington Do	: Reagan Airport		~								Hide	Stats
Select Binnin	д Туре:	Weathe	r Data Statistics fo	r selected s	chedule:							(
Standard		Define	selection criteria:		I	Equa	al or Above	ł			Equ	al or Below.
Bin on	Dry Bulb 🗸	i	Dry Bulb Temperat	ure °F	~		50.00 🖨	1	AND	~		80.00
Bin size	2 ~		ANI	> ~								
O Joint Frequ	ency	i	Humidity Ratio gr/	lb d.a.	~		65.00 🗘	1	N.A.	~		70.00
Tdb size	2 ~		N.A.	. ~								
W size	2 ~				v		50.00	1	N.A.	~		70.00 🌲
Select Month	s:		N.A.	. V				-				
January	July				~		50.00		N.A.	~		70.00
February	August								6	<u> </u>) <u> </u>	
March	September	Charles (a		Carlo - ale -			Get Stats		Сору	Stats		port Stats
April	October	Stats to	r the selected hours	s fitting the	selection c	la:		Num	per of	nours: 2118		
May	November	Des	scription	Units	Minimun	n	Maximum		Wt Av	erage	e M	ean
June	December	Dry	bulb temperature	°F	55.04		79.88		70.23		67.	.46
All Months	Clear Months	Dev	v point temperature	°F	54.71		78.62	(54.53		8.	.69
		Wet	bulb temperature	°F	55.04		78.30	6	56.11		66.	.67
# of Hour	s	Hur	nidity ratio	gr/lb	65.06		146.66	9	91.18		10	5.86
Selected		Rela	ative humidity	%	45.14		100.00	8	31.94		12	.57
Selected		Enth	nalpy	Btu/lb da	23.33		41.93	1	31.09		2.	.63
		Win	d speed	mph	0.00		28.86 7.56			56		.43
Crea	ate Bins	Win	d direction	degrees	0.00		360.00	1	167.58	3	18	0.00
		Atm	ospheric pressure	psia	14.45		14.94		14.72		14	.69

Lev

10

ARLINGTON, VA PARTIAL LOAD CONDITIONS 2,118 /YR

Hourly Data Binning and Statistics

ARLINGTON, VA PARTIAL LOADS= 2,118 HRS/YR

DESIGN CONDITIONS: 70.2°F DRY BULB/66.1°F WET BULB

Scope	Net Ton	ft.² /Ton	Area	Sen Gain	Lat Gain	Net Gain	Sen Loss
🖃 Building	1.14	2,713	3,102	9,226	4,493	13,719	-5
System 1	0.62	2,527	1,561	5,268	2,146	7,414	-3
Ventilation				-132	846	715	-3
Zone 1			1,561	5,399	1,300	6,699	0
- 1-Entry			128	42	0	42	0
2-Laundry			195	583	0	583	0
3-Office			164	1,157	200	1,357	0
4-Bath 1			45	-7	0	-7	0
5-Utility			64	0	300	300	0
6-Kitchen / Lr / Dr			869	3,389	800	4,189	0
19-Lower Stairs			96	235	0	235	0
System 2	0.53	2,932	1,541	3,958	2,346	6,305	-3
Ventilation				-132	846	715	-3
□ Zone 1			1,541	4,090	1,500	5,590	0
7-Bedroom 3			144	471	200	671	0
8-Bedroom 3 Closet			46	34	0	34	0
9-Bedroom 4			170	582	200	782	0
10-Bath			63	80	100	180	0
11-Bedroom 4 Closet			46	34	0	34	0
12-Utility			29	414	0	414	0
13-Hall			117	110	0	110	0
14-Guest			166	820	400	1,220	0
15-Guest Bath			100	220	100	320	0
16-Master Bath			168	180	100	280	0
17-Master Closet			106	100	0	100	0
18-Master Bedroom			290	963	400	1,363	0
20-Upper Stairs			96	81	0	81	0

SENSIBLE HEAT RATIO= 0.67

BOSTON 99% LOAD CONDITIONS= 88 HRS/YR

DESIGN CONDITIONS: 87.6 F DRY BULB/71.6 F WET BULB

Scope	Net Ton	ft.² /Ton	Area	Sen Gain	Lat Gain	Net Gain	Sen Loss
🖃 Building	1.41	1,475	2,085	13,967	2,993	16,960	23,213
🖳 🔁 System 1	1.41	1,475	2,085	13,967	2,993	16,960	23,213
Ventilation				1,055	1,283	2,338	5,100
🖃 Zone 1 - Clg.: 59%, Htg.: 50%			1,104	9,417	610	10,027	9,031
1-Entry			96	295	0	295	949
2-Office			144	1,751	200	1,951	1,459
3-Bathroom/Closet			144	161	150	311	752
4-Utility			144	818	0	818	1,335
5-Kitchen			216	2,536	260	2,796	1,786
6-Dining/Living			360	3,856	0	3,856	2,750
- 🖃 Zone 2 - Clg.: 18%, Htg.: 26%			585	2,913	550	3,463	4,619
7-Stairs			225	454	0	454	1,635
8-Bedroom 2			144	1,201	200	1,401	1,556
9-Bath 2			72	305	150	455	469
Line 10-Bedroom 3			144	953	200	1,153	959
🖃 Zone 3 - Clg.: 22%, Htg.: 25%			396	3,563	550	4,113	4,463
11-Master Bedroom			288	3,228	400	3,628	3,302
12-Master Bath			108	336	150	486	1,161

SENSIBLE HEAT RATIO= 0.82

BOSTON PARTIAL LOAD CONDITIONS= 1,786 HRS/YR

DESIGN CONDITIONS: 69 F DRY BULB/65 F WET BULB

Scope	Net Ton	ft.² /Ton	Area	Sen Gain	Lat Gain	Net Gain	Sen Loss
🖃 Building	1.08	1,938	2,085	10,155	2,757	12,913	176
System 1	1.08	1,938	2,085	10,155	2,757	12,913	176
Ventilation				0	1,047	1,047	40
- 🖃 Zone 1 - Clg.: 62%, Htg.: 49%			1,104	8,195	610	8,805	67
1-Entry			96	138	0	138	7
2-Office			144	1,554	200	1,754	11
3-Bathroom/Closet			144	61	150	211	6
4-Utility			144	630	0	630	9
5-Kitchen			216	2,309	260	2,569	13
6-Dining/Living			360	3,503	0	3,503	21
- 🖃 Zone 2 - Clg.: 16%, Htg.: 24%			585	2,123	550	2,673	33
7-Stairs			225	165	0	165	12
8-Bedroom 2			144	942	200	1,142	11
9-Bath 2			72	224	150	374	3
Line 10-Bedroom 3			144	791	200	991	7
🖃 Zone 3 - Clg.: 21%, Htg.: 26%			396	2,819	550	3,369	36
11-Master Bedroom			288	2,686	400	3,086	27
12-Master Bath			108	134	150	284	9

AUSTIN PEAK LOAD CONDITIONS 88 HRS/YR

DESIGN CONDITIONS: 98° F DRY BULB/74° F WET BULB

Scope	Net Ton	ft.² /Ton	Area	Sen Gain	Lat Gain	Net Gain	Sen Loss
🖃 Building	1.69	1,230	2,085	17,328	3,009	20,337	22,747
E System 1	1.69	1,230	2,085	17,328	3,009	20,337	22,747
Ventilation				1,981	1,299	3,280	3,445
🖃 Zone 1 - Clg.: 58%, Htg.: 68%			1,104	10,279	610	10,889	13,060
1-Entry			96	445	0	445	1,023
2-Office			144	2,052	200	2,252	2,207
3-Bathroom/Closet			144	256	150	406	1,071
4-Utility			144	986	0	986	2,123
5-Kitchen			216	2,568	260	2,828	2,709
6-Dining/Living			360	3,972	0	3,972	3,927
🖃 Zone 2 - Clg.: 18%, Htg.: 16%			585	3,221	550	3,771	3,174
7-Stairs			225	726	0	726	1,125
8-Bedroom 2			144	1,265	200	1,465	1,068
9-Bath 2			72	306	150	456	323
Line 10-Bedroom 3			144	923	200	1,123	658
🖃 Zone 3 - Clg.: 24%, Htg.: 16%			396	4,373	550	4,923	3,068
11-Master Bedroom			288	3,837	400	4,237	2,270
12-Master Bath			108	536	150	686	798

SENSIBLE HEAT RATIO= 0.85

AUSTIN PARTIAL LOAD CONDITIONS 3,852 HRS/YR

DESIGN CONDITIONS: 71° F DRY BULB/67° F WET BULB

Scope	Net Ton	ft.² /Ton	Area	Sen Gain	Lat Gain	Net Gain	Sen Loss
🖃 Building	1.12	1,862	2,085	10,060	3,381	13,440	0
E System 1	1.12	1,862	2,085	10,060	3,381	13,440	0
Ventilation				0	1,671	1,671	0
🖃 Zone 1 - Clg.: 63%, Htg.: 0%			1,104	7,936	610	8,546	0
1-Entry			96	140	0	140	0
2-Office			144	1,679	200	1,879	0
3-Bathroom/Closet			144	63	150	213	0
4-Utility			144	630	0	630	0
5-Kitchen			216	2,132	260	2,392	0
6-Dining/Living			360	3,292	0	3,292	0
			585	1,698	550	2,248	0
7-Stairs			225	175	0	175	0
8-Bedroom 2			144	767	200	967	0
9-Bath 2			72	149	150	299	0
Line 10-Bedroom 3			144	609	200	809	0
🖃 Zone 3 - Clg.: 23%, Htg.: 0%			396	2,950	550	3,500	0
11-Master Bedroom			288	2,802	400	3,202	0
12-Master Bath			108	149	150	299	0

EQUIPMENT SELECTION

Sizing is a balancing act

UNDERSTAND THE HEATING CAPACITY RANGES

МХ) 2) Н	Z-50 IEA	:42N/ TING	12	Ra Q(W:	i ted Btu/h):	450 35	00 G 75	lax. λ(Btu/h)	: 536	300												
Indoor	r D.B.				80PF/2	5.7°C					70'F/2	1.1%				60"F/15.6"C						
Outdo	ar W.B.		Max.	Rated	75%	50%	25%	Min.	Max.	Rated	75%	50%	25%	Min.	Max.	Rated	75%	50%	25%	Min.		
(PE)	(°C)																					
65	18.3	Q[Blu/h]	49353	54003	40502	27002	-	24012	51679	55878	41909	27939	-	24846	\$3600	57589	43199	28799	-	25611		
		w	6744	4577	3812	7445		1447	6406	4353	3570	2224	-	1200	_ E1ED	4226	3553	2257	-	1348		
60	15.6	Q[Bfu/h]	49353	50948	38211	25474	-	22397	51679	52847	39635	26423	-	23232	53600	54544	40908	27272	-	23977		
		w	6714	4359	3675	2328	-	1407	6406	4195	3537	2241	-	1355	6160	4074	3434	2175	-	1315		
55	12.8	Q[Bbuh]	49353	47893	35920	23947	-	20727	51679	49815	37361	24908	-	21559	53600	51489	38616	25744	-	22283		
		W	6714	4153	3501	2218	-	1384	6406	3961	3339	2115	-	1320	6160	3845	3242	2053	-	1281		
50	10.0	Q[Bbuh]	49353	44838	33629	22419	-	19060	51679	45784	35088	23392	-	19888	53600	48434	36325	24217	-	20589		
		w	6714	4038	3404	2155	-	1347	6406	3889	3278	2076	-	1297	6160	3739	3152	1997	-	1248		
45	7.2	Q[Bbuh]	49353	41783	31337	20892	-	17398	51679	43752	32814	21876	-	18218	53600	45379	34034	22689	-	18895		
		w	6714	3905	3292	2085	-	1323	6406	3726	3141	1990	-	1262	6160	3583	3020	1913	-	1214		
40	4.4	Q[Btuh]	40982	34855	26141	17428	-	15739	43091	36649	27487	18324	•	16549	44787	38091	28558	19046	-	17200		
		w	6433	3963	334													2	-	1180		

@65 F OAT and 70 F IAT

Minimum Capacity of ~24,000 Btu/h

SYSTEM CAPACITY RANGES IN COOLING

N 1	IXZ) C	Z-50	:42N/ Ling	42	Rated Q(Btu/h) W:): 40	0500 4403	Max. Q(Btu/h):	4300	0							
lin	ndoor	W.B.			72ºF / 22.2ºC			67*F	/ 19.4°C			64ºF / 17	.8°C		61°F/	16.1°C	
0	utidoo	r D.B.		Max. Rated	75% 50%	25%	Min. M	Max. Rated 759	6 50%	25% Min.	Max. Rated	75% 5	0% 25	% Min.	Max. Rated 75%	50% 25	% Min.
	("F)	(°C)															
	115	46.1	Q[Btu'h]	41193 32400	2430016200	-1	3953 3	9649 31185 233	39 15593	-1343	3913430780	230851	5390	-13255	36044 28350 21263	14175	-12209
			w	5213 3434	2174 1470	-	1357	5748 3787 23	97 1621	- 1497	5948 3919	2481	1677	- 1549	5614 3699 2341	1583	- 1462
·	110	43.3	Q[Btu't]	4362840176	3013220088	-1	48174	090137665282	49 18833	-1389	3782234830	2612317	7415	-12845	30786 28350 21263	14175	-10456
			w	5322 4773	3021 2043	-	1340	5597 5019 317	77 2148	- 1405	5014 4496	2846	1924	- 1262	3732 3346 2118	1432	- 939
	106	41.1	Q[Btu'h]	46187 42525	3189421263	-1	57504	1788 38475 288	56 19238	-14250	37830 34830	2612317	7415	-12900	30791 28350 21263	14175	-10500
			w	5612 5019	3177 2148	-	1389	5415 4843 300	56 2073	- 1340	4786 4281	2710	1832	- 1185	3544 3170 2007	1357	- 877
	102	38.9	Q[Btu'h]	4714042930	3219821465	-1	61284	2693 38880 2916	50 19440	-1460	38245 34830	2612317	7415	-13085	311302835021263	14175	-10650
			w	5418 4931	3122 2111	-	1319	5224 4755 30	10 2035	- 1272	4585 4173	2642	1786	- 1116	3386 3082 1951	1319	- 824
	98	36.7	Q[Btu'h]	47827 43740	32805.21870	-1	64874	3398 39690 2976	58 19845	-14950	38084 34830	2612317	7415	-13128	30999 28350 21263	14175	-1068
			w	5153 4755	3010 2035		1250	4952 4579 28	99 1960	- 1204	4289 3958	2505	1694	- 1040	3149 2906 1839	1244	- 76
	94	34,4	Q[Btu't]	4818044550	3341322275	-1	68604	3800 40500 303	75 20250	-1532	37668 34830	2612317	7415	-13181	30660 28350 21263	14175	-1072
			w	4857 4579	2899 1960	-	1178	4670 4403 270	37 1884	- 1133	3970 3743	2369	1602	- 963	2895 2730 1728	1168	- 70
	90	32.2	Q[Btu'h]	4818044550	33413 22275	-1	72414	380040500303	7520250	-1567.	37668 34830	2612317	7415	-13479	30660 28350 21263	14175	-1097
			w	4857 4579	2899 1960	-	1108	4670 4403 270	37 1884	- 105	3970 3743	2369	1602	- 906	2895 2730 1728	1168	- 66
	86	30	Q[Btu't]	4818044550	3341322275	-1	76184	380040500303	7520250	-16017	37668 34830	2612317	7415	-13774	30660 28350 21263	14175	-11212
			w	4857 4579	2899 1960	-	1038	4670 4403 270	37 1884	- 99	3970 3743	2369	1602	- 849	2895 2730 1728	1168	- 61
	82	27.8	Q[Btuft]	4818044550	33413 22275	-1	79984	3800 40500 3037	75 20250	-1636	37668 34830	2612317	7415	-14071	30660 28350 21263	14175	- 11453
			w	4857 4579	2899 1960	-	968	4670 4403 278	37 1884	- 93	3970 3743	2369	1602	- 791	2895 2730 1728	1168	- 57
	78	25.6	Q[Btuft]	4818044550	33413 22275	-1	83734	3800 40500 3037	75 20250	-16700	37668 34830	2612317	7415	-14364	30660 28350 21263	14175	- 1169
			w	4857 4579	2899 1960	-	898	4670 4403 278	37 1884	- 85	3970 3743	2369	1602	- 734	2895 2730 1728	1168	- 53
	74	23.3	Q[Btuft]	4818044550	33413 22275	-1	87634	3800 40500 3037	75 20250	-17057	37668 348 30	2612317	7415	-14669	306602835021263	14175	- 1194
			w	4857 4579	2899 1960	-	825	4670 4403 278	37 1884	- 793	3970 3743	2369	1602	- 674	2895 2730 1728	1168	- 49
	70	21.1	Q[Btu/h]	4818044550	3341322275	-1	91334	3800 40500 3037	75 20250	-1739	37668 34830	2612317	7415	-14959	306602835021263	14175	-1217
			w	4857 4579	2899 1950	-	755	4670 4403 278	37 1884	- 72	3970 3743	2369	1602	- 617	2895 2730 1728	1168	- 45
	66	18.9	Q[Btu/h]	4818044550	3341322275	-1	95014	3800 40500 3037	75 20250	-1772	37668 34830	2612317	7415	-15246	30660 28350 21263	14175	-12410
			w	4857 4579	2899 1960	-	686	4670 4403 278	37 1884	- 655	3970 3743	2369	1602	- 561	2895 2730 1728	1168	- 409
	62	16.7	Q(Btult)	4818044550	33413 22275	-1	98674	3800 40500 3037	75 20250	-1806	37668 34830	2612317	7415	-15532	306602835021263	14175	-12642
			w	4857 4579	2899 1960	-	617	4670 4403 278	37 1884	- 590	3970 3743	2369	1602	- 504	2895 2730 1728	1168	- 368
				1							1				1		

YOU NEED: COOLING LOAD AND CAPACITY OVERLAP

MXZ 5C42: COOLING LOAD AND CAPACITY OVERLAP

AITSUBISH

Humidity Control: Deal with it at the source!

Un-tempered Outdoor Air (OA)

© 2023 BEC Pitfalls and Challenges

BUILDING EVOLUTION CORPORATION

Conventional vs. Passive House Enclosure

BUILDING EVOLUTION CORPORATION Achieve Performance & Durability Through A Holistic ApproachTM

© 2023 BEC

Quality Assurance Commissioning (QACx)

Fundamental Cx Includes: Review OPR, BOD, and a Design Review

© 2023 BEC

Here's what we see.... What do you see?

Entrenched Habits

Not understanding the Technology / Applied misinformation

- ➤Workmansh#t
- Devalue Engineering

➢Blindspots

© 2023 BEC Pitfalls and Challenges
Questions, Thoughts, Discussion

© 2023 BEC

Thank You.

Ken Neuhauser, M.Arch, MSc. Arch, CEM, CPHC[®] - President

Chris Kennedy, CEM, CCP, CPHC[®] - Building Performance Consultant II

Kimberly Llewellyn, MS Eng, CPHC[®] - Emerging Markets, Senior Product Manager – Mitsubishi Electric Heating & Cooling

info@BuildingEvo.com

508-475-9016

BuildingEvo.com

(*Q*) phius

Achieve Performance & Durability Through A Holistic ApproachTM