

Pam Harwood, AIA, NCARB Professor of Architecture Ball State University Emily Rheinheimer
Graduate Architect
Ball State University

Dan Porzel, CPHB, Leed AP
Owner / Builder
Cedar Street Builders

Walter Grondzik, PE, CPHC Emeriti Professor of Architecture Ball State University

INTRODUCTION: ABSTRACT Alley House as a Case Study

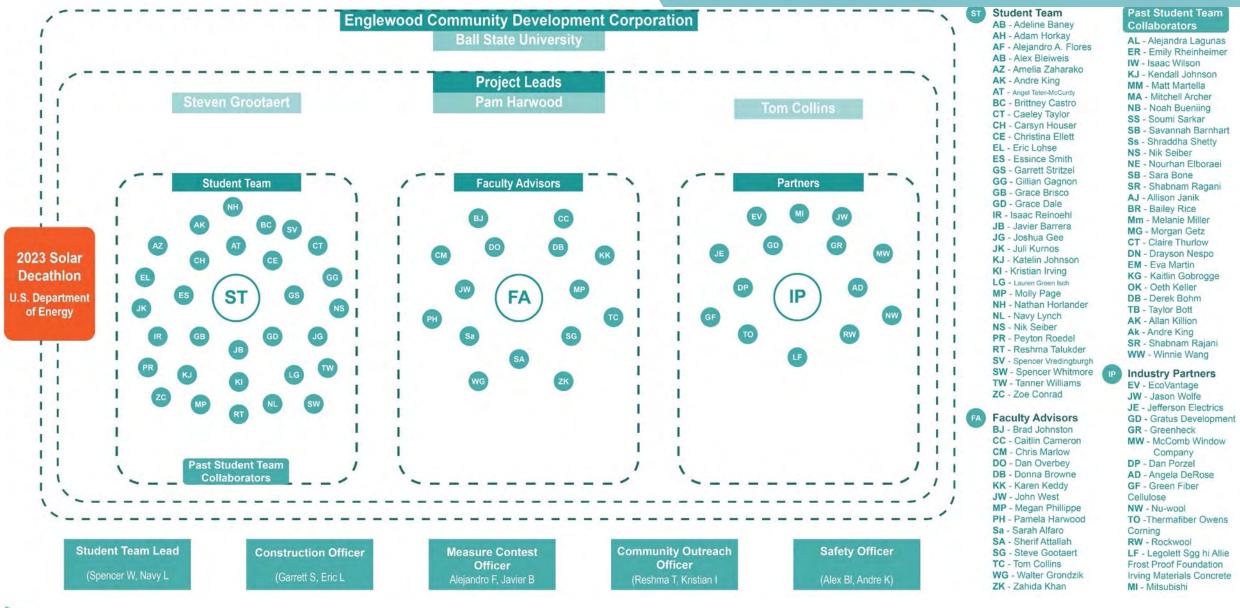
First & Foremost, Alley House...

Is a local **affordable** housing solution to a global climate crisis, which disproportionately impacts the poor, vulnerable, and disenfranchised.

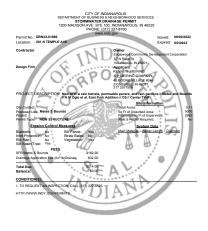
Employs **high-performance** building design to ensure the comfort, health, & well-being of low-income residents who often struggle to find quality affordable housing in the area & are being displaced due to gentrification pressure from market-rate urban development.

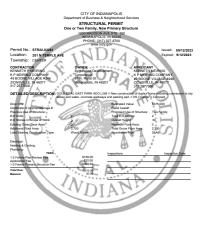
Uses onsite renewable **energy** production & other resource conservation measures to dramatically reduce monthly utility bills for residents, which can be a significant portion of their monthly income.

Acts as a catalyst for **sustainable** urban infill housing in an area struggling from decades of disinvestment, vacancy, & property abandonment to enhance quality of place & community interactions.



SD Team: Ball State University + Englewood

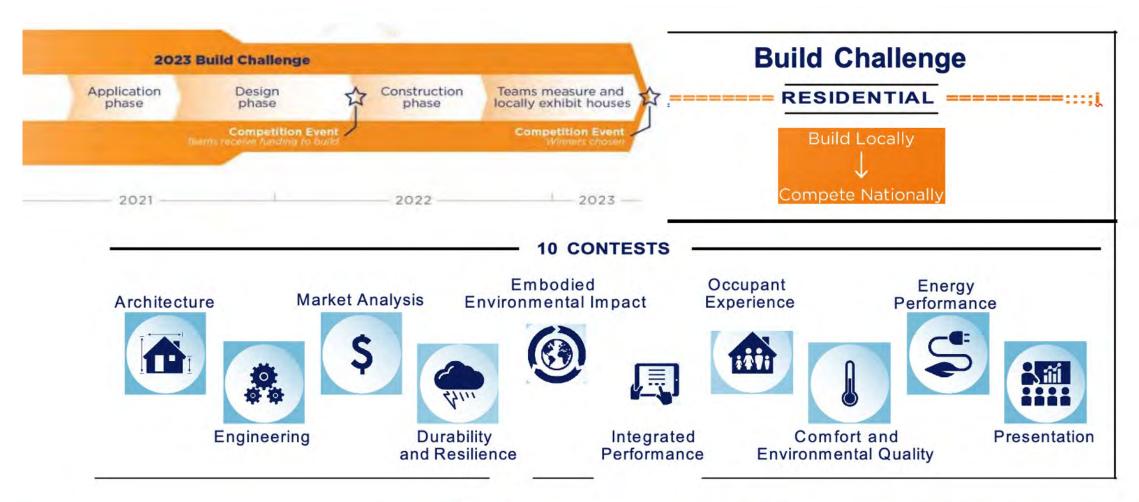




November 8-11, 2023

PORTRACTOR OF THE PROPERTY OF

U.S. DEPARTMENT OF ENERGY: SOLAR DECATHLON BUILD CHALLENGE 2023 **BALL STATE UNIVERSITY - PERMIT SET ALLEY HOUSE** 201 N TEMPLE AVENUE, INDIANAPOLIS, IN 46201 G001


Solar Decathlon Local Build 2023: Ball State

Solar Decathlon 2023: Build Locally

PASSIVE BUILDING PRINCIPLES

Thermal Control Radiation Control Air Control OPTIMIZED MINIMIZED CONTINUOUS BALANCED AIR-TIGHT WINDOWS VENTILATION MECHANICAL INSULATION CONSTRUCTION SYSTEMS & SOLAR WITH HEAT GAINS RECOVERY 5 Thermal Enclosure 4 Solar 2 Air -7 Mechanical 8 Mechanical 6 Moisture Risk **Tightness** Systems Protection Ventilation Limitation phius CORE Prescriptive **SCOPE LIMITATIONS** COMPACTNESS **SOLAR PROTECTION ENCLOSURE MECHANICAL** APPLIANCES, & HOT **VENTILATION** LIMITATION

Phius Prescriptive Path

phius CORE Prescriptive 2021 Snapshot

State ASHRAE Climat Zon iCFA* (ft Number of Bedrooms Number of Storie

orange cells						
l	INDIANA	¥				
	INDIANAPOLIS INTL /	v				
	4A					
	1386					
	3					
	2					

Input or select data in

1 GENERAL

1.1.2 iCFA divided by Number of Bedrooms	Maximum Limit	900	
(Calculated Value based on Inputs)	OK, Meets Limit	450	

3. COMPACTNESS

3.1 Maximum Envelope Area (Maximum Envelope to Floor Area Ratio)

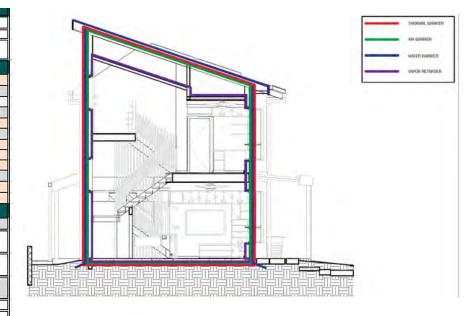
4670	ft2
3.46	

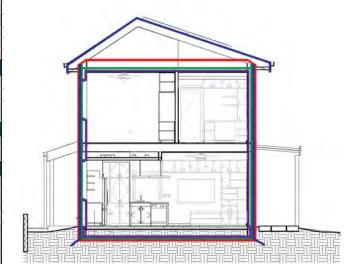
*per dwelling unit

4. SOLAR PROTECTION

4.1.1 Maximum Whole Window SHGC 4.4.1 Projection Factor for Fixed Overhangs

0.40						
	NR					


5. HEAT TRANSMISSION


5.1.1a Fenestration/Openings	Maximum Whole Component U-Value	0.17	(BTU/h.ft².°F)
5.1.1b Walls & Overhang Floors	Minimum Effective R- Value	37	(ft².°F.h/BTU)
5.1.1c Roofs, Ceilings	Minimum Effective R- Value	68	(ft².°F.h/BTU)
5.1.1d Whole Slab Foundations & Below-Grade Walls and Floors of Conditioned Basements and Crawl Spaces	Minimum Effective R- Value	18	(ft²_°F.h/BTU)

Phius Prescriptive Path

10 view ai	l content in t	nis checklis	st, make su	re to 'enal	le macros'.	*				NR - means 'N	o Requirement'	
ired input cells.	Calculated requirement line. Calculated cells.							Input 'X' for verification in columns P-Q.				
ired dropdown menu inputs.	Specific calculated requirement. Calculated cells from another sheet.										nfirmation of do	cument
ictions are italicized.	Instructions: Use t	he [+] icon on t	he far left of th	e screen to exp	and and view b	uilt in complian	ce calculators.		location/file na	me.		
0 Project Information												
phius Pro	oject Number:	2050			Project Name:	The Alley Ho	ouse				Date:	4/15/2
0.3 Climate Information												
State / Province:	INDIANA			City:	INDIANAPOLIS	INTL AP					Climate Zone:	4A
0.4 Project Location												
City: Indianapolis					Street Address:	201 N Temple			1		Zip Code:	4620
0.5 Project Team												
Submitter/CPHC Name:	CONTRACTOR FOR SELECTION										phius Number:	1234
Builder Name: Dan Porzel									phius Number:	1235		
Rater Name:	Best Rater								1		phius Number:	1236
0.6 Project Specifics	1	- 1				to the tree		1 200	1	Nico	mber of Stories:	2 1/2
Project Type:	Duplex - New Co	onstruction			Interior Co		Area (iCFA) [ft²]:				er of Bedrooms:	0.000
Of Securing Co.						Exterior Enc	osure Area [ft²]:	4,670	Lam manage	1,00,001.00	C 1 3 C 1 2 C 1 2 C 1 2 C 2 C 2 C 2 C 2 C 2 C	3
1 General									Designer Verified	RaterVerfied	N/A	Submit
1.1 Scope												
1.1.1 The proposed building is a single-fam	ally detached or att	ached reciden	sa ¹ (and dwallin	a unit ² whore t	ha accumants a	ro primarily por	manant in natur	-1			1000000	
The proposed building is a single-rain	my detached of act	acried resideri	ce (one aweiii	ig unit where t	ne occupants a	re primarily peri	manent in natur	c.)				
112 The ICCA (minute much short flowed)	variousa en ses sin		< 0.00 revi	a musical et al	and and and the	بحاملات خاند ما		Liverina .		1		
1.1.2 The iCFA (minus excluded floor levels)) divided by the nu	mper or pearo	oms < 900 [ft	J. Excluded Floo	or Levels are flo	or levels withou	it egress windov	vs/doors.				
3023	Area of Exc	luded Floor Le	vels [ft²]			iCFA/E	Bedroom	< 900 [ft²]:				
1.1.2.1		0				4	62	YES			7	
1.1.3 No fossil fuel combustion equipment	t is to be installed.					1	100					
1.1.4 No jetted tubs or indoor pools are planned.								1	2.00			
1.1.5 No natural draft fireplaces are to be installed.									. v. n			
1.2 Co-Requisites ³												
1.2.1 ENERGY STAR Certified Homes												
1.2.2 DOE Zero Energy Ready Homes												
1.2.3 EPA Indoor airPLUS												
									Barrier W. W. W.	Rater Verified	7977	
2 Air-Tightness									Designer Verified	Rater Vermed	N/A	Submit
2.1 Measured building airtightness q50 ≤ 0.	.04 cfm/ft2 enclo	sure area.4										
2.1.1 Testing agent identified for preliminar												
2.1.2 Airtightness detail drawings must be	comprehensible ar	nd show a cont	tinuous uninte	rrupted air barr	ier that forms f	rom different m	naterials and con	nponents at all				
junctions.											W	
3 Compactness									Designer Verified	Rater Verified	N/A	Submi
3.1 Building Enclosure Area ⁶												
	mum limit (ff²)							4.837			0 1	
3.1.1 Does not exceed the calculated mavin	own mine fie 1.							4,037		And Spiritual of	-	
3.1.1 Does not exceed the calculated maxim									Designer Verified	RaterVerfied	N/A	Submit
Solar Protection												
Solar Protection 4.1 Glazed Fenestration Solar Heat Gain												
Solar Protection								0.40				
4.1 Glazed Fenestration Solar Heat Gain 4.1.1 Does not exceed the calculated maxin 4.2 Glazed Fenestration Area	mum requirement.							0.40				
4.1 Glazed Fenestration Solar Heat Gain 4.1.1 Does not exceed the calculated maxim	mum requirement.							0.40				
4.1.1 Does not exceed the calculated maxin 4.2.1 The overall window-to-wall (WWR) are	mum requirement. ⁵ ea ratio ⁹ is ≤ 18%.		Enet	South	Wast	Tatal	Calculated					
4.1.1 Does not exceed the calculated maxin 4.2.1 The overall window-to-wall (WWR) are	mum requirement.		East	South	West	Total	Calculated WWR	0.40 ≤ 18%			-	

ALLEY HOUSE OVERVIEW

Sustainability: Equity – Economy - Environment

Engaged Student Involvement

The student engagement and community partnership over this two-year design build process has been transformative. Our community brought invaluable feedback . to the team. We held open houses, exhibit displays, community participation sessions and work days, workshops with professional consultants, groundbreaking and ribbon cutting ceremonies, and a two-week public exhibit with over 1000 attendees to the Alley House. • Students were engaged in every aspect of this project . from design to construction to performance testing.

- Open House to solicit feedback on design Fall 2021
- "Advance to Build" Team Presentation Spring 2022
- Groundbreaking Ceremony Summer 2022
- Full-scale layout of house and educational centers
- DayStar children full-scale mockup of play space
- House Occupancy Testing Spring 2023
- Grand Opening to give thanks to over 200 partners
- Ribbon cutting with all having part of the ribbon
- Public exhibit student led tours Spring 2023
- Performance testing of the Alley House continues

CONTRACTORS,

SUB-CONTRACTORS AND

INDUSTRY ADVISORS

ENGLEWOOD

Engaged Community Partner: Englewood

Promoting authentic and unique aspects of the area, utilizing PR Mallory as a central green space, providing a walkable environment for all ages, and improving basic infrastructure.

Supporting current neighbors while reducing vacancy. Welcoming new residential housing types to add density.

Encourage new development being walkable and attractive, promoting urban food growing and production, encouraging small businesses, and building off of the areas strengths.

Enhancing existing offerings, providing a community-focused local school, and providing education opportunities for all ages and to those who have fallen behind.

Community and Student Engagement

Ground Breaking Ceremony July 2022

Soil Sample Collection July 2022

DayStar Childcare Visit and Interaction with Prototype Modular Storage Bins June 2022

State Farm Neighborhood Assist Grant July 2022

Community Open House CAP: INDY Fall 2021

THE ALLEY HOUSE

201 N TEMPLE AVE., INDIANAPOLIS, IN 46202

Just east of downtown Indianapolis is the lively neighborhood of Englewood, a multi-cultural, multi-generational place to live, work, worship, learn, and play. Like many post-industrial communities in the Midwest, Englewood has experienced population decline, reduced rates of educational attainment, decreasing median household incomes, and high vacancy rates. The recent affordable housing crisis and deteriorating existing building stock have made this neighborhood a target for outside developers who are building at a fast pace using low-quality construction materials and are contributing to rising property values. Higher property values bring a positive impact such as an influx of capital into the area and increased beautification efforts in the neighborhood; however, they also negatively impact residents in the displacement of original households and by changing in the social character of the neighborhood. Although affordable senior housing has been developed in the Near Eastside (NES) of Indianapolis, this has not effectively addressed the shortage of affordable housing for families.

Research indicates that vacant and abandoned properties in the Near Eastside neighborhood continue to disturb the communities' economy, health, welfare, and safety. Indianapolis is not sheltered from these harsh realities. Yet, communities often respond to difficulties by finding opportunities. One such appartunity is the plan of Cardinal Studio and Englewood Community Development Corporation (ECDC) to re-engage this neglected community by constructing multiple family housing units on vacant lots owned by Englewood CDC.

INITIAL VOLUME

Long south face toward alley

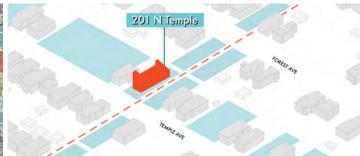
CREATE TWO UNITS

Short demising wall between units

EXTEND STAIR CORE &

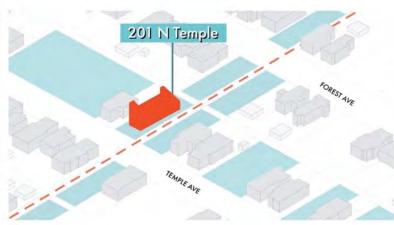

Elevate stair angled wall for view to alley

DEFINING ENTRANCES & SECOND FLOOR SPACES


Porch placement and secondary entries

ROOF PITCH STUDY & ADDITION OF EAST AND WEST PORCHES

Addition of PV array on 4/12 pitch facing south


SUMMER FALL SPRING WINTER SOLSTICE (JUNE 21) (SEPTEMBER 22) (MARCH 20 (DECEMBER 21)

CLIMATE ZONE 5A | COLD | HUMID

201 N TEMPLE AVE. INDIANAPOLIS, IN

Urban Design

The Alley House is an affordable housing solution to a global climate crisis which disproportionately impacts the poor, vulnerable, and disenfranchised. Students designed a high-performance building to ensure comfort, health, and well-being of low-income residents who struggle to find quality affordable housing and are being displaced due to gentrification pressure of market-rate development. The two-family Alley House is a prototype for urban infill along an east-west running alley where there are over 70% vacancies.

Urban Design of the Alley House

Legend

Englewood CDC 20 SITES:

36 N Lasalle St 42 N Gray St

43 S Lasalle St 52 S Lasalle St

60 S Dearborn St

201 N Temple Ave

216 N Rural St 218 N Oakland Ave

222 N Rural St

225 N Temple Ave 226 N Gray St

228 N Temple Ave

250 N Lasalle St

253 N Oxford St

325 N Dearborn St

November 8-11, 2023

Site Selection, Analysis, and Planning

Form Development

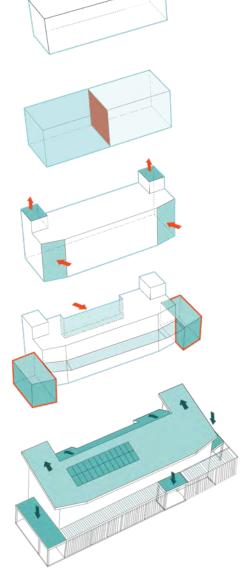
INITIAL VOLUME

Long south face toward alley

CREATE TWO UNITS

Short demising wall between units

EXTEND STAIR CORE & ACTIVATE THE ALLEY


Elevate stair angled wall for view to


DEFINING ENTRANCES & SECOND FLOOR SPACES

Porch placement and secondary

ROOF PITCH STUDY & ADDITION OF EAST AND WEST PORCHES

Addition of PV array on 4/12 pitch facing south roof

Initial Volume

East-west elongated simple rectangle shape limited surface area and optimal solar orientation.

Create Two Units

Dividing the volume into two units, but giving both access to the south and the

Stair Core & Alley Activation

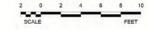
Simple formal changes to create architectural interest, to address the alley/corner site, and provide for natural ventilation.

Defining Entrances & Spaces

Giving each unit a porch for transitional space and community interaction.

Roof Pitch Study & Addition of **East and West Porches**

Mono pitch to the south for optimal solar array orientation and area. Addition of pergola with the porches for creating enclosure for the connecting spaces.



First Floor Plan

Second Floor Plan

Mezzanine & Stack Ventilation

Alley House Sections & Details

Alley House Elevations

Detail and Materiality

Angled walls on the corners frame alley views and create an inviting, welcoming presence. Sage green cement board and thermally-modified poplar blend Alley House with its environment. The biophilic design educates the community about green buildings; passersby can see the solar array on the roof, rain gardens, bioswales, shading devices, native plantings, and the corner stair towers for ventilation.

Phius Conference 2023 I Houston, Texas

November 8-11, 2023

Equitable Community Design

Our neighborhood community development corporation • began 25 years ago to help revitalize Near Eastside Indianapolis guided by principles of livability, opportunity, vitality, and education. The team embraced these principles in the design of the Alley House, addressing a sense of place, facilitating educational opportunities, incorporating sustainable site/building strategies, providing resilience and durability, addressing needs of residents at different life stages, and fostering equity and inclusion.

- Asset-based community design approach
- Site design promotes walkability/access to school
- Visibility of "green features" fosters education
- Arrangement of units promotes equity in access
- Alleyway as preferred neighborhood connector
- Provide east and west porches and gardens
- Design for a diversity of family types
- Consider how family will change over time
- 15-year rent-to-own leased at 30% and 50% AMI

Variety of Family Types

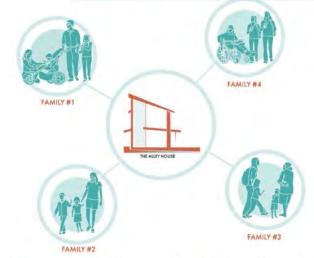
The Alley House achieves the priorities of Architecture, Affordability, and Inclusivity set by the community and Englewood CDC where the median household income is \$25,000 providing with-

- Affordable & attainable housing
- · Environmentally conscious designs

AMILY#1

A family with couple and young children

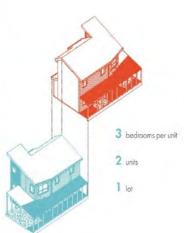
FAMILY#2

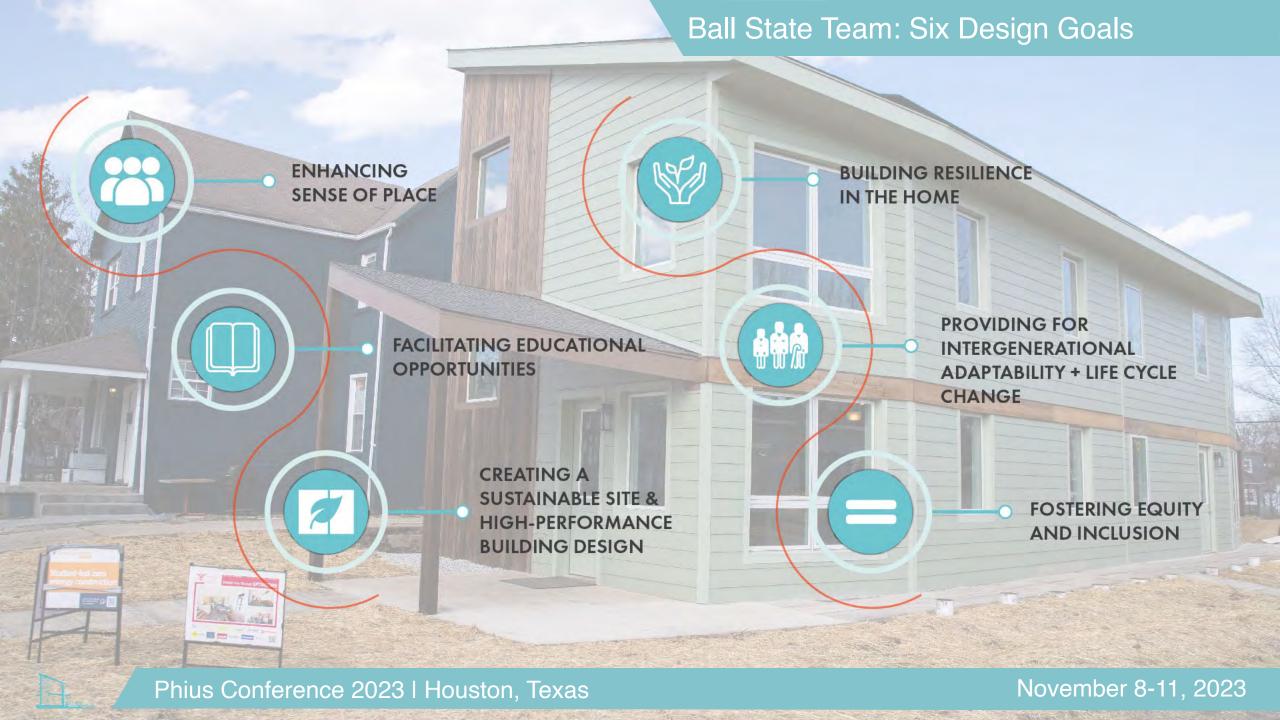

A family with young children and single parent

FAMILY#3

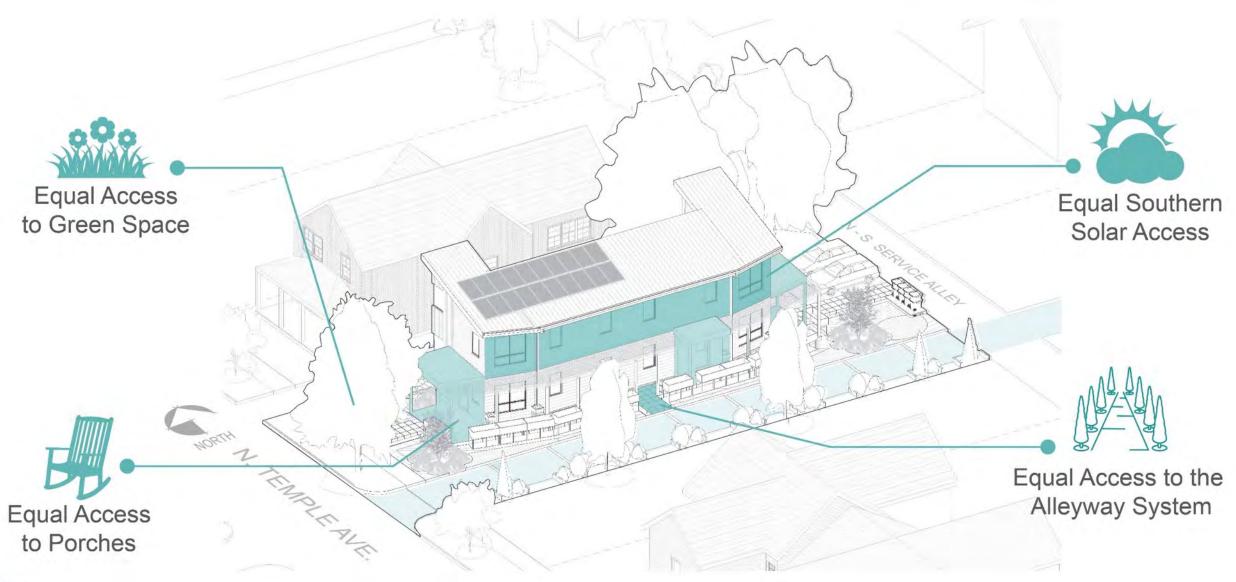
A family with elderly member

FAMILY#4


A family with specially able member



Wacant Lot



Two Compact Units: 1350 sf East and West

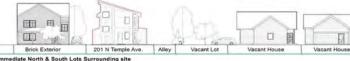
Urban Duplex: Analysis & Design Equity

Contextual & Ecosystem Design

Englewood is a compact context area with a strong . sense of history combined with dedication to community development. Understanding this background and . conveying the qualitative aspects of the area, students . created graphics to illustrate the existing urban form, its . building types, land uses, and relative scale, highlighting . the unique elements of the area. They worked with landscape architecture students for sustainable strategies in . water management and natural "green infrastructure" to . support our regional ecosystem and help build habitats. •

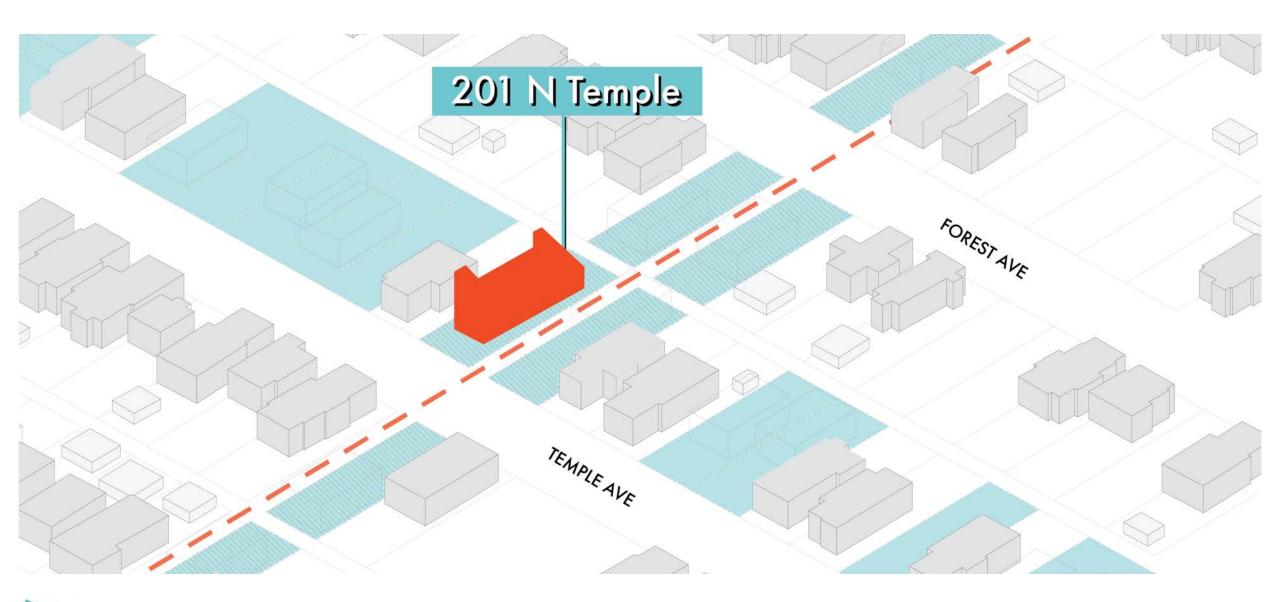
Englewood Village Great Places 2020 Plan Infill Housing Guidelines for Compact Context Consider massing, height, architectural features Characteristic porch culture + shallow front yard Create alleyway as unique public greenspace Sustainable Sites framework for landscape Employ variety of water management strategies Promote gardening sustainable food production Landscape with low-maintenance native plants Provide bioswale + rain garden in SE corner

Poor Pedestrian/Bicycle Connectivity



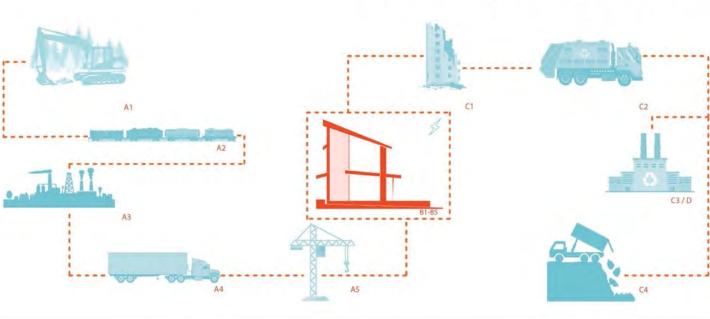
Poor Alley Conditions Roadside Litter

Privacy Fences



Analysis of the alley and potential for a pedestrian natural habitat corridor

Urban Neighborhood Vacant Lots Study



Affordability & Funding Sources

From day-one, the student team used the LIHTC requirements given to the owner/community partner to structure and inform the design approach and process in the design studio courses. Every decision was * made regarding first/construction costs tied to the budget and longterm costs tied to operations and maintenance by the owner and cost of utilities and maintenance by the tenants.

- LIHTC funding as part of a larger scattered site housing project CDBG funding from the City of Indianapolis
- Grant funding from US DOE and State Farm Insurance
- Product donations and discounts
- Cost-saving student design and building activities
- Community partner will rent units at 30% or 50% AMI
- Tenants will be part of a rent-to-own program for up to 15 years

A1-A3 PRODUCT STAGE

A1 RAW MATERIAL EXTRACTION A2 TRANSPORT TO MANUFACTURING SITE A3 MANUFACTURING

A4-A5 TRANSPORTATION STAGE

A4 TRANSPORT TO CONSTRUCTION SITE AS INSTALLATION / ASSEMBLY

B1-B5 USE STAGE

B1 USE **B2 MAINTENANCE B4 REPLACEMENT** B5 REFURBISHMENT

C1-C4 END OF LIFE

C1 DECONSTRUCTION & DEMOLITION C2 TRANSPORT C3 WASTE PROCESSING C4 DISPOSAL

D BEYOND THE BUILDING

D REUSE - RECOVERY - RECYCLING

Advanced Framing Construction

Passive Ventilation System Design

Local Materials

Photovoltaic Panel System

Native Landscaping and Water Collection and Retention

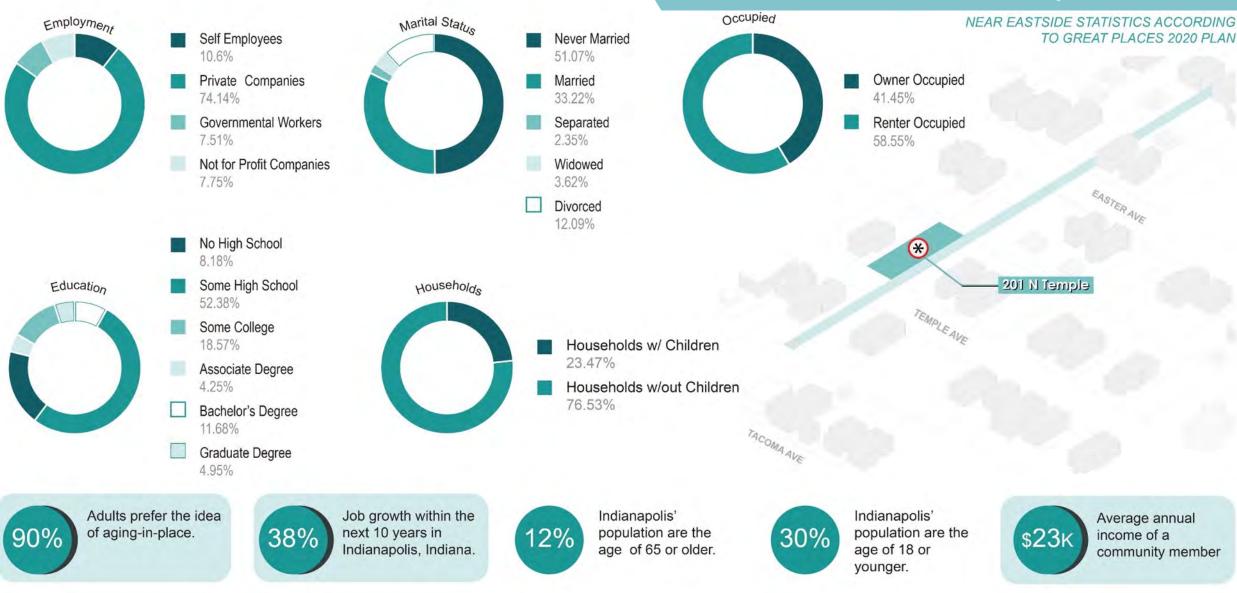
Super-Insulated Construction

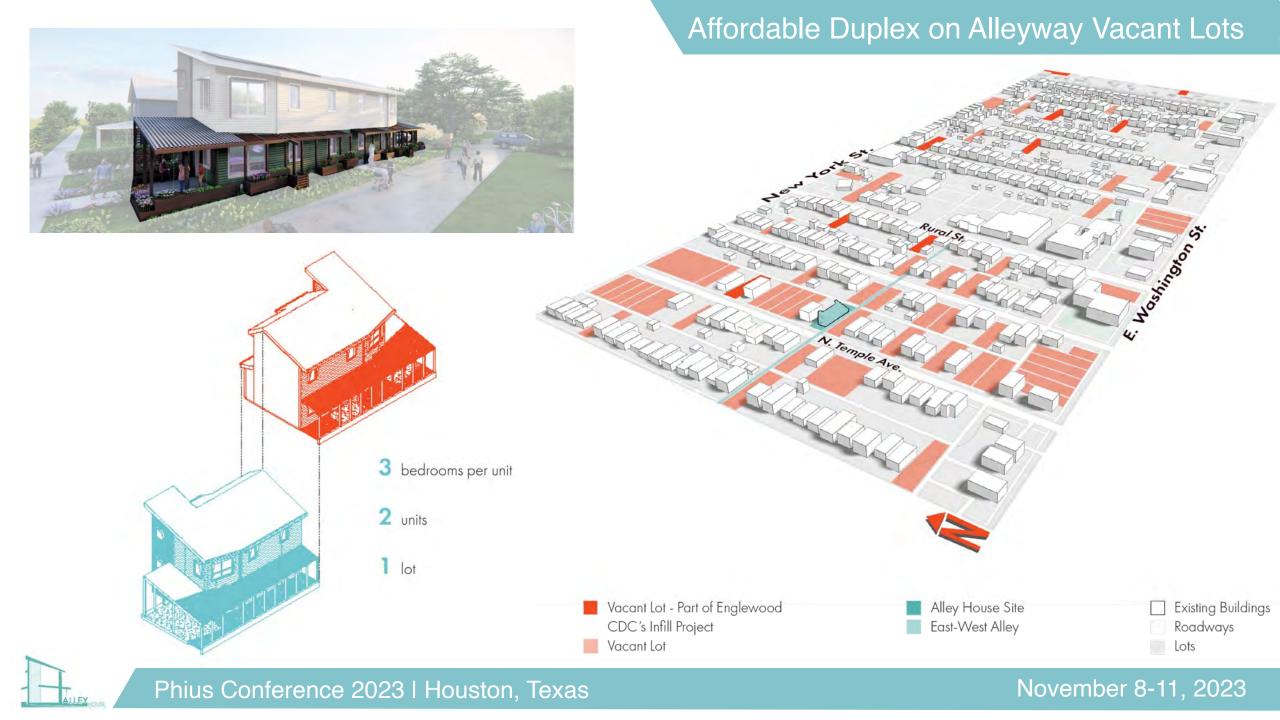
New Construction Cost

\$56,795.00

Rent to Own Plan

15 Year Flan Rent Based on Income 30% AMI - \$474,000 50% AMI - \$770,000 60% AMI - \$894,000 Estimated Monthly Cost of Utilities Montry Insurance



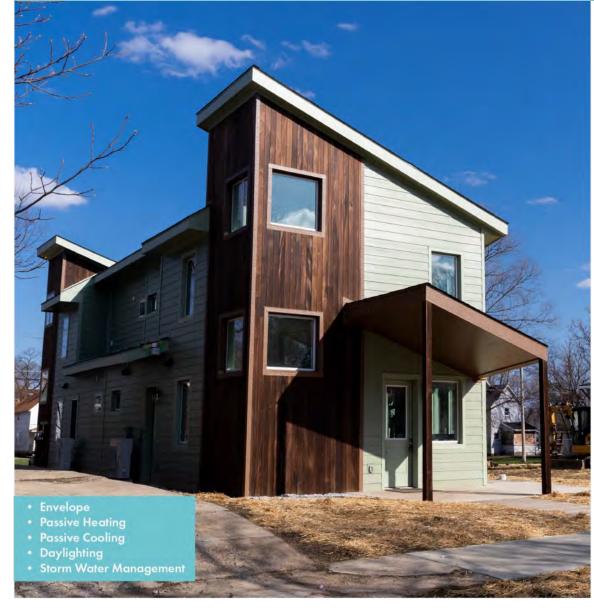

Psob/sq ft. Total sq. ft. of Duprex Construction Cast Construction Cast w/ Soft Casts

Property Tax

Economic and Market Viability

Summer Sun Lofty spaces of (Blocked by roof & staicase gives the pergola) provition of Stack Ventilation PV array Exposure to the summer sun Releasing Warm air through Cross-Ventilation and Stack-Ventilation Winter sun (Passive strategy for internal passive heat gain) Warm Air Internal Heat Gain from Concrete floor by Winter sun Cool Breeze

PASSIVE ELEMENTS



INTERNAL HEAT GAIN OPERABLE WINDOWS

Passive Design Considerations Lower Costs

STAIR TOWER

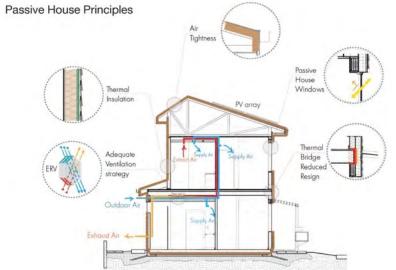
Rent to Own: Potential Tenants

Potential Occupants

FAMILY #3

This family is interested in renting the Alley House. Tina is the grandmother, living with her adult daughter and granddaughter in the neighborhood.

Rent to Own: The New Tenant Amber

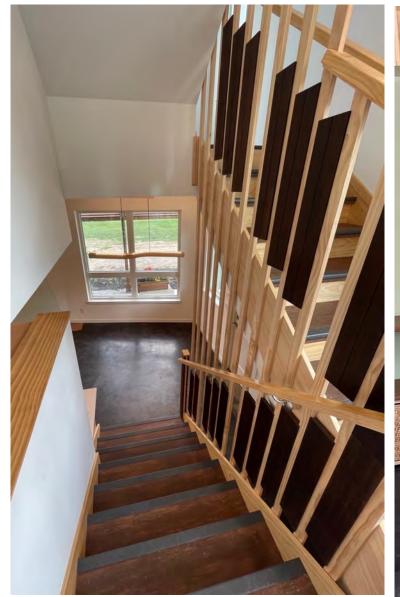


Health & Well-Being Design

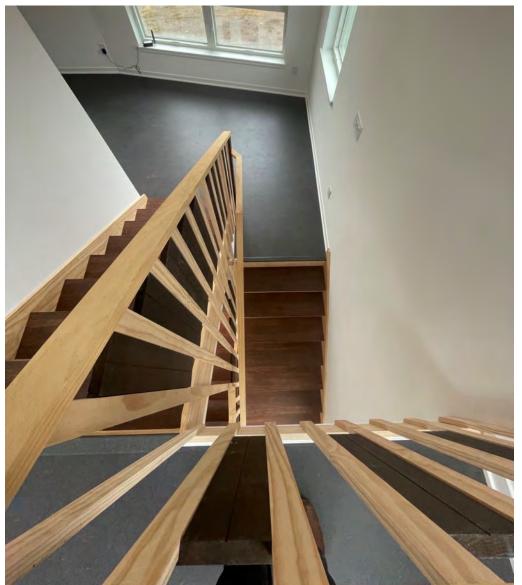
Biophilic design using natural materials and connecting the inside with the outside informs the project. Transitional spaces are reinforced in the duplex's porches connected to the sun shading . pergola, planting beds and boxes, rain gardens, and a bioswale. We leveraged Phius principles to address occupant's health and . comfort with continuous insulation, radiation control, airtight construction, balanced ventilation, and minimalized mechanical.

- Views to natural landscaping from gathering spaces
- Use of natural hardwoods in cabinetry/built ins/stairway
- Energy recovery ventilator provides constant fresh air
- Haven IAQ monitor measures particulates, VOCs, humidity
- Optimized windows with radiation control and shading pergola
- Airtight construction value of .66 ACH50 air change/hour
- Continuous insulation with 5 inches of mineral wool

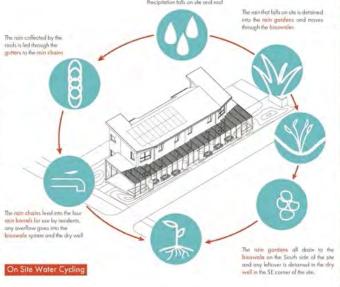
Biophilic Design Promotes Health + Well Being



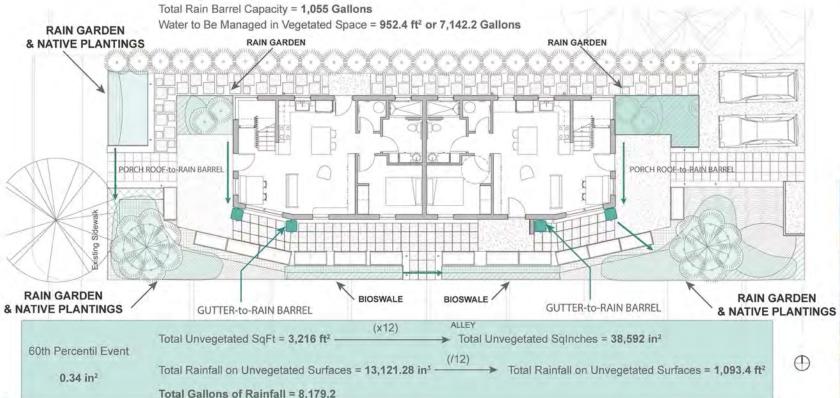
Hand-Craft in Natural Hardwoods

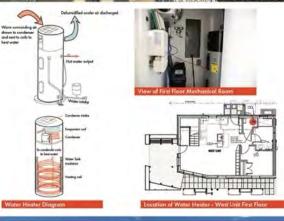


Stair Rail Construction

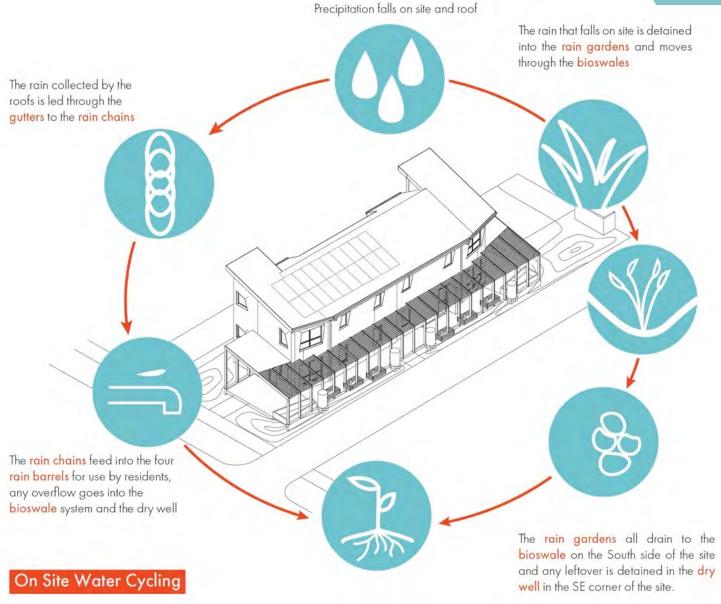


Design for Water


There is a lack of environmentally responsive and community conscious design in this neighborhood. The Alley House serves as a proof of concept not only through its impact on the community, but also with its building construction (following PHIUS prescriptive path), and landscape design (following Sustainable Sites certification), that the divide between sustainable building design practices and affordable housing criteria can be lessened. The Alley House designed for water carefully considering how all water could be harvested and used in rain gardens, bioswales, and for productive and flowering gardening. Two 100-gallon rain barrels are used on the south side and two more 80-gallon barrels on the north side of the Alley House. A large bioswale and rain garden in the southeast corner of the lot prevents water from draining to the alley, which every other house in the area does, creating a muddy mess. The Alley House designed the landscape utilizing Sustainable Sites as a framework, carefully calculating the rainfall and total volume of water to be managed in the vegetated space.


For domestic hot water we utilized a heat pump water heater because it is 2-3 times more efficient than a conventional electric resistance water heater. The water heater has a user interface module that allows real-time monitoring and control features such as hybrid or efficiency use and vacation time setback. The heat pump water heater will extract ambient heat from the interior of the home as part of the efficient vapor compression refrigeration cycle. It is also powered by the solar array and backup battery during weather emergencies. All the sink and lavatory faucets, water closets, and shower/tub faucets are low flow, water saving, and energy efficient.

Total Vegetated SqFt = 2,077.61 ft2



Integrated Design Thinking

Rain Garden & Bio Swale Construction

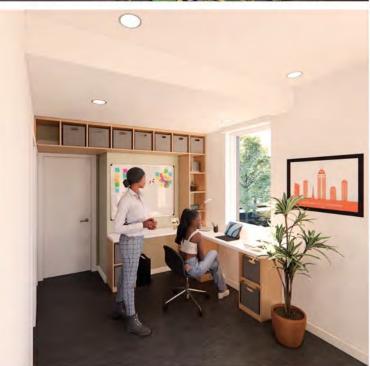
Adaptable & Flexible Design

The student team designed the Alley House as a two-family home that responds to the changing needs of a family life cycle. Flexible, multi-use, and accessible spaces with adaptable furnishings suit families with children, empty nesters, and elders who wish to age in place.

- · Major living areas on 1st floor
- · Ground floor bedroom
- · Ground floor, ADA accessible full bathroom
- Zero-step entries
- · Modular built-ins and moveable furnishings for storage and seating
- · Flex space on the 2nd floor could be a playroom, office, or den
- · Small footprint but a variety of spaces for occupants to get away

Second Floor Flex Space

First Floor Flex Space



3rd bedroom located on the ground floor can be used flexibly as – guest room, or in-law suite, or older youth, or aging in place

Kitchen Cabinetry Construction & Installation

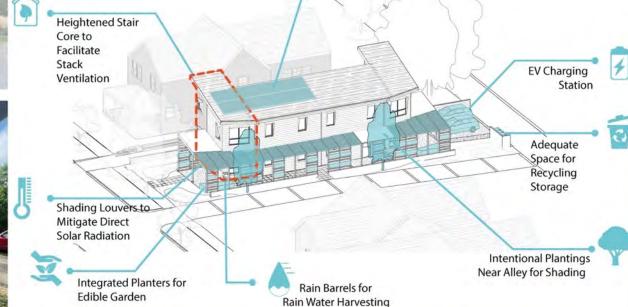
Media Wall & Study Space Installation

Stuff

Family Centered Quality & Adaptability

Integrated Design

sign workshops.


The Integrated Design Studios (ARCH 600+400) Site, context and neighborhood analysis, strucallowed student teams to develop the Alley tural, environmental and building systems, acces-House with focus on a layered consideration of sibility and life safety, environmental stewardship, systems integration guided by sixteen weekly and technical documentation were all synthesized assignments, topical presentations, participa- in the design build project. An integrated evaluatory community engagement sessions, and de-tion and decision-making process across all systems informed the process.

- PV array designed net-positive with battery back-up
- Rainwater harvesting in rain barrels and landscaping
- Stormwater retention bioswales and rain gardens
- South façade shading pergola protects summer sun/allows winter
- Frost-protected shallow foundation reduces concrete used

Photovoltaic Energy **Production & Storage**

- Passive strategies of cross & stack ventilation and thermal mass
- Super-insulated building envelope

Frost Protected Shallow Foundation

Insulated Floating Slab

Frost protected shallow foundation (FPSF)

Facts:

- Does not use traditional concrete footers or stem walls
- Saves energy, time and construction cost by reducing material quantities, site preparation time, and slab construction
- 6" of EPS foam beneath the slab sits on a compacted gravel base providing R-21.6 of insulation
- EPS slab edge form-work stays in place after concrete pour for thermal control

KEY

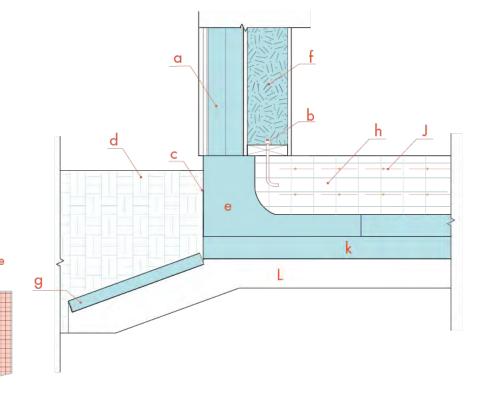
Engineered insulation skirt (Type II + mesh)
Type II Sheets of rigid insulation

8" Polished Legalett slab 3500 psi concrete
6" Porch Legalett slab 4500 psi concrete

- al Exterior Mineral Wool Insulation
- b] "J" Bolt Anchor
- c] 1/2" EPS Insulation
- d] Earth Infill
- e] Legalett Slab Edge
- f] Blown-in Insulation

8" Concrete Slab (3500 psi) [h

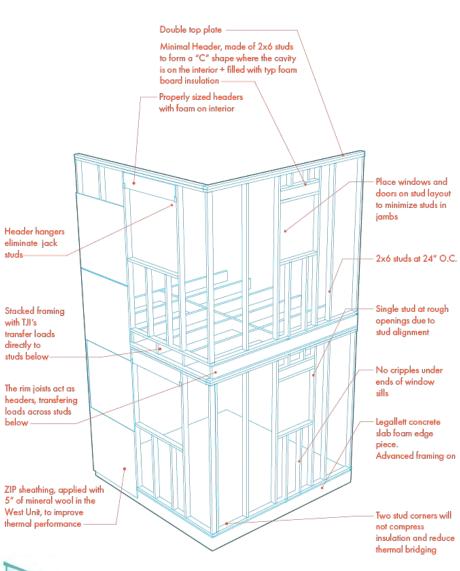
#4 Rebar [J


Min. 6" EPS Rigid Insulation [k

Compacted Gravel [L

Sub-Contractor Innovation in Slab Pour

Indoor Air Film / Finish Surface [R-0.68] 5/8" Gypsum Sheathing [R-0.50] 2"x6" Stud Wall 24" O.C. 5.5" High Density Cellulose [R-22.00] **INTERIOR** 5" Rigid Mineral Wool Insulation [R-19.00] 4'x8' 7/16" ZIP Sheathing, All Seams Taped **EXTERIOR** [R-0.62] Vertical Furring Strips Horizontal Fiber Cement Lap Siding / Outside Air Film [R-1.17]


High Performance Enclosure System

Advanced Framing Construction

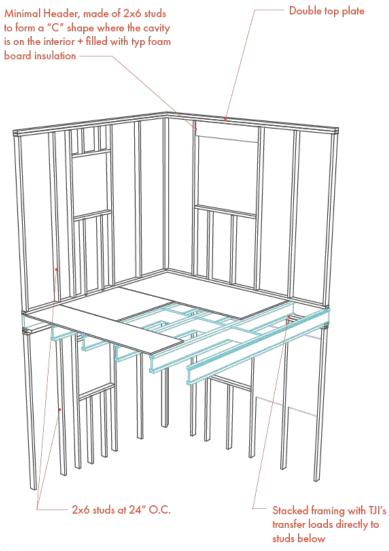
ADVANCED FRAMING FEATURES

Optimal Value Engineering + TJI Benefits

- Studs are generally spaced 24" on center instead of 16" saving lumber
- Framing method uses less wood in headers, sills, and jambs of windows and doors
- Framing method + 24" O.C. TJI selection allows for minimal wood in overall framing
- Less lumber to install = less labor cost + faster framing time
- Less lumber also decreases the heat loss from thermal bridging + more insulation

November 8-11, 2023

Advanced Framing with Zip Sheathing

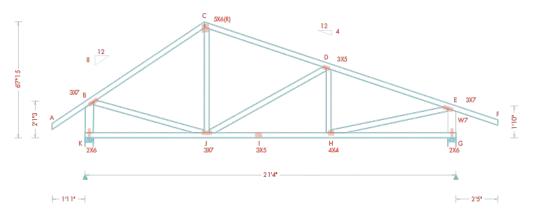


Floor Framing Construction

TJI Floor Constuction

Truss Joist I-Joist (TJI)

Pre-manufactured wooden truss joist


Facts:

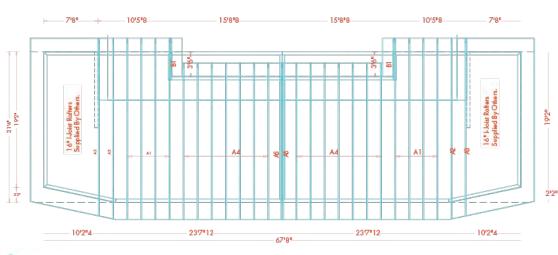
- TJIs directly align with the advanced framing wood studs bellow to carry the load
- TJIs enabled a long span with less depth eliminating interior baring walls
- TJIs consist of a top and bottom flangle of solid lumber held together with an oriented strand board (OSB) web and resembles a traditional wide-flange steel member
- TJIs use approximately 50% less wood than traditional joists and are pre-manufactured, resulting in high accuracy, consistency, and quality
- Made of engineered wood, they shrink less than traditional lumber and have greater resistance to twisting and warping

Engineered Roof Trusses

Roof Truss (A4)

Lumber:

Value Set: 13B (Effective 6/1/2013) Top chord: 2x4 SP #1;


Bot chord: 2x4 SP #1;

Webs: 2x4 SP #3; W1,W7 2x6 SP #1; Lumber value set "13B" uses design values approved 1/30/2013 by ALSC

Loading:

Truss designed for unbalanced snow loads.
Wind loads based on MWFRS with additional C&C
Truss designed for unbalanced snow loads.
End verticals not exposed to wind pressure.

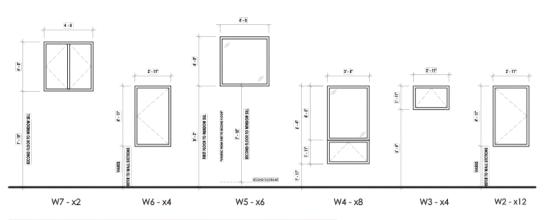
Roof Truss Layout

Roof Framing

Roof Truss facts

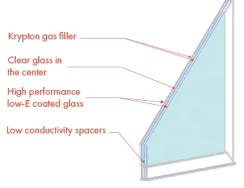
- The south roof slope is 4:12 pitch, and the north slope is 8:12 pitch
- The trusses are spaced 24" on-center to align with the advanced wood stud framing below
- The roof slopes facilitate rainwater and snow melt runoff where gutters, downspouts, and rain barrels will collect it for irrigation use
- Asymmetrical gabled roof design also allows for the small mono-pitch section of the roof over the stair towers to work structurally and create more roof square footage on the south orientation to accommodate a larger solar PV array
- An innovative aspect of the Alley House's cold roof system (non-conditioned attic space) is the design of its control layers, which use taped sheathing at the 2nd floor ceiling."
- The floor of the attic is then filled with approximately 26" of loose-fill cellulose to achieve a thermal performance of R-92

Framing "Topping Off" Celebration



Window facts

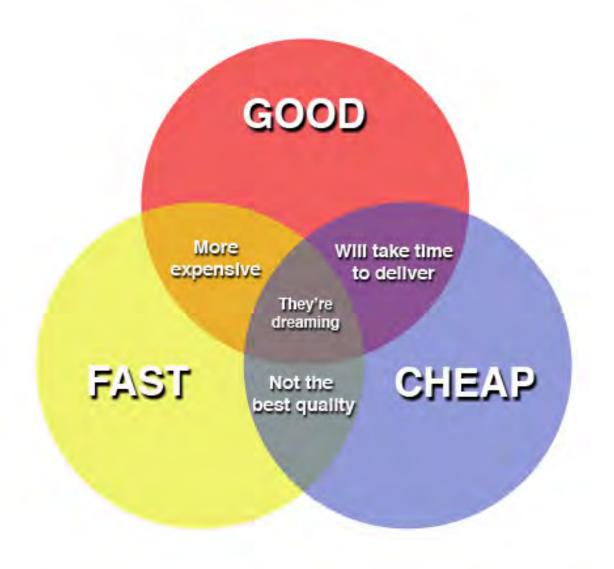
- The window openings in the Alley House are strategically located as part of the 24" advanced framing module
- Pella triple-pane insulated glazing units (IGUs) in fiberglass frames filled with Krypton gas between glass panes and have low-e coating
- The windows will achieve the following energy performance ratings:
 - U-factor 0.16-18
 - Solar Heat Gain Coeffi cient (SHGC) 0.24 - 0.27
 - Visible Transmittance (Tvis) 0.43 -0.50
- Energy Star-certified windows are 50% better than energy code compliant windows in Indiana and meet the PHIUS Core Prescriptive standards
- The windows are a combination of fixed. operable casements, and operable awnings
- Fiberglass was chosen for its strength, durability, and lower carbon footprint compared with vinyl frames and were lower cost and required less maintenance over time compared with metal clad wood frames



Window Selection: U factor and SHGC

Triple Pane Window Section

Window Buck-out



Ven Diagram: Good Cheap Fast

Cement Shortage - Infrastructure

Insulation Installation

Students helping with cellulose installation

Interior – 2 x 6 advanced framing wall cavities filled with Greenfiber Sanctuary dense packed blown-in cellulose

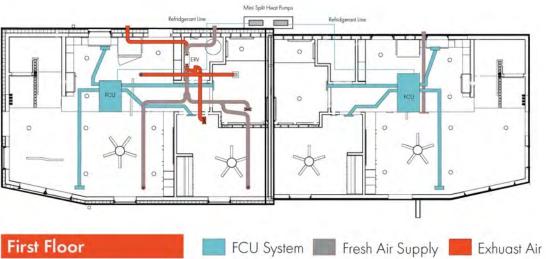
Installation of two layers of Rockwool

Exterior – taped layer of ZIP sheathing and 2 layers of Rockwool mineral wool continuous insulation 5" total

Cladding installation

Exterior – furring strips installed for cladding, allowing moisture to escape

Alley House Elevations


Alley House Elevations: Built

FCU + ERV INTEGRATION PLANS

Second Floor FCU System Fresh Air Supply Exhuast Air

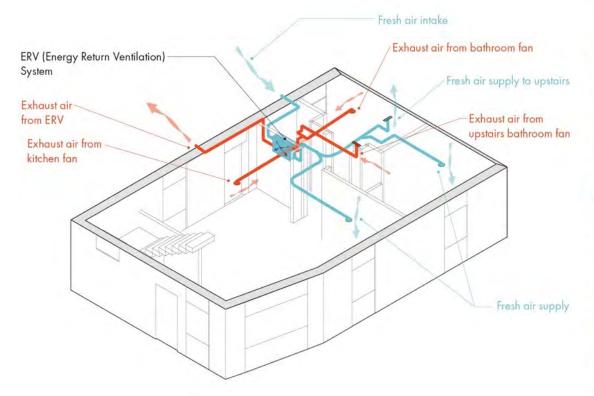
Mechanical System: Split System Heat Pump

Fan Coil Unit (FCU)

Mitsubishi multi-zone, short ducted heat pump system

Facts:

- Split zoning of first and second floor allow for smaller mechanical units to be hidden in dropped ceiling saving mechanical room space
- Zone splitting allows for saving in energy usage by supplying heating or cooling where it is needed
- Integrating an ERV with the FCU provides fresh preconditioned outside air throughout the home
- Performance characteristics of the system:

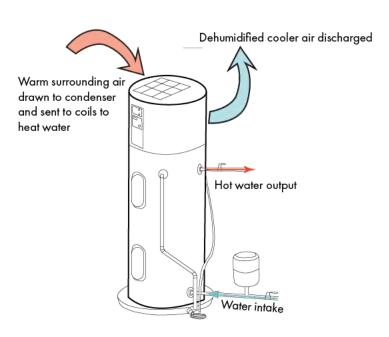

• SEER	17.3
• EER	13
• HSPF	9.8
 COP Heating (47F) 	3.10
COP Cooling	4.82

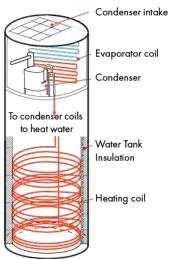
• Indoor Acoustics 23-30 dB (A)

Ventilation System: Energy Recovery Ventilator

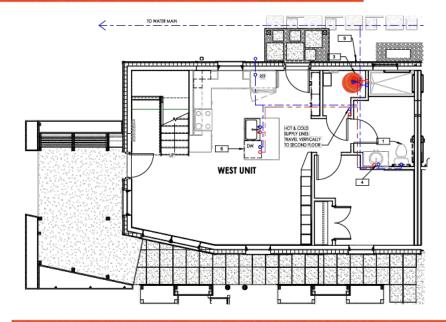
ERV INTEGRATION

Energy Recovery Ventilation (ERV)

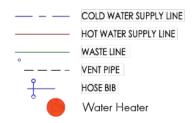

Greenheck Sync 180 energy recovery ventilator


Facts:

- The ERV, fitted with a MERV-13 filter, supplies air to "clean" spaces such the living area, bedrooms, and flex space via 6" hard ductwork.
- Contaminated air is pulled from the kitchen and bathrooms continuously.
 Bathrooms are fitted with a boost mode switch to temporarily increase the air flow rate (supply and exhaust) after a high-moisture event like a shower
- Fresh, dehumidified air supplied via the ERV is then used by the multi-zone heating/cooling system, which does not supply any fresh outside air. The ERV has a sensible recovery efficiency of 84%.
- Exhaust and supply air streams do not cross but run through a heat and moisture exchanger for energy recovery.
- Meets ASHRAE 62.2 standards



Hot Water System: Heat Pump Water Heater



Location of Water Heater - West Unit First Floor

Heat Pump Water Heater

- Heat pump water heaters are 2-3 times more efficient than conventional electric resistance hot water heaters
- A.O. Smith water heater includes a user interface module (UIM) that allows real-time monitoring and control features such as vacation setbacks
- This heat pump water heater will extract ambient heat from the interior air in the home as part of the efficient vapor compression refrigeration cycle
- The tank also has 4" of insulation to prevent heat loss from the tank to the interior

PLUMBING SYMBOLS

PV Array Electrical System

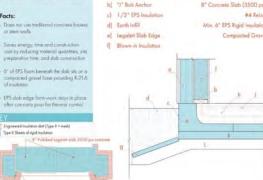
Solar Array facts

- The Alley House provides onsite renewable energy generation via an 8.8kW solar photovoltaic (PV) system composed to 22 Panasonic Evervolt 400w PV modules mounted on a rack to the south facing roof
- Helioscope software suggest that the array can provide 12,181 kWh of renewable energy per year. With a 25-year warranty their expected module yield at the end of the warranty period of 92%
- The PV array collects energy in the form of direct current (DC). The energy then is moved through an inverter in the mechanical room to become the alternating current (AC) used by the appliances, outlets, and other equipment in the home
- The electrical system connects to an outdoor electric vehicle (EV) charging station for use by occupants with an electric vehicle
- Two Ecoflow modular, portable batteries can be charged during the daytime when occupants are using less solar energy and used in the event of a power failure or for load shedding

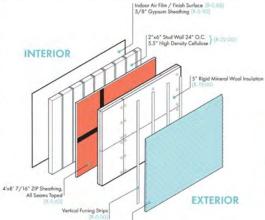
Alley House Performance

Sustainable Materials & Embodied Energy Design

Informed material selection was critical in our design process, selecting sustainable, . durable, safe, and healthy materials using Tally to consider Global Warming Potential. We chose a shallow frost protected slab using 33% less concrete, celebrated local materials with Indiana made thermally modified wood and Kentucky hemp wood, and used reclaimed walnut for the built-ins and reclaimed limestone from an IPS school for the pathway around Alley House. Wood fiber cellulose was used for wall cavities and . cold roof because of its performance and ability to sequester carbon.



- Frost-protected concrete slab with R22
- Building envelope advanced framing + CI for R47
- Cold roof with wood fiber insulation R92
- Thermally modified wood stair tower cladding
- Wood fiber cellulose insulation -.3kgCO2e/m2
- Reclaimed and recycled wood and limestone
- Fiber cement cladding used for durability



Horizontal Fiber Cement Lap Siding / Outside Air Film

Affordability & Sustainable Materials

Collaboration with Partners

Students, faculty advisors, partners, community members, industry reps, and contractors and sub-contractors together are tackling the question, how can we take sustainable building design practices and technology and bridge the gap to meet affordable housing criteria for Englewood? Collaboration with the community and our partners provided immense opportunities for students to apply new and innovative techniques in the design and build and to challenge the status quo on high-performance building in Indiana. We celebrated each victory from ground breaking, to tree "topping off," to ribbon cutting ceremony with our partners!

Affordability & Industry Partnerships

Cedar Street Builders

Dan Porzel, Manager

Cedar Street Builders focuses on building high quality, high performance homes. Dan Porzel acts as a general contractor and consults with the team on high performance Cedar Street Builders will be building the home.

KP Meiring

Kemper Meiring

KP Meiring offers development, design-build, pre-construction, and construction services. KP Meiring is working with Englewood CDC on the other homes being constructed and is working with Cedar Street Builders on the Alley House.

Jefferson Electric

Joel Walsman, PV Consultant

Jefferson Electric is a fast-growing small business in Indianapolis that has provided donated consultation time to assist the team in solar array calculations, product selection and will potentially aid in the installation of the solar array to the unit. Jefferson provided a discount on the solar array and is providing us with a smart

Greenheck

Tony Rossi

Greenheck has consulted the team in our system requirements for comfort and environmental quality. The company is also graciously donating an ERV.

McComb Window Company

Paul Spacco, Sales Rep. & Angelo A. Zarvas, VP of Arch.Sales

McComb is a distributor for Pella. Pella Corporate gave us a big discount on the windows. McComb helped us choose the windows to meet the design specs—specifically the PHIUS certification requirements.

Nu-wool

Paul Spacco, Sales Rep. & Angelo A. Zarvas, VP of Arch.Sales

McComb is a distributor for Pella. Pella Corporate gave us a big discount on the windows. McComb helped us choose the windows to meet the design specs--specifically the PHIUS certification requirements.

Thermafiber Owens Corning

Todd Shear, US Manager Eric Aubrey, Indiana Sales Manager

Thermafiber is a potential provider of insulation material. The team is currently in discussion with the company.

Legalett Frost Proof Foundation

Ken Williams, VP of Sales Mike Reynolds, Operations Director

Legalett have been contracted to provide the slab system and have provided a discount on the engineering services necessary to get the foundation through city permitting. The slab is called a frost-protected shallow foundation and Legalett is a proprietary system for this kind of foundation.

Mitsubishi

Mark Giganti, Sales

electrical panel box.

Mitsubishi is a potential provider of components of the HVAC system. The team is currently in discussion with the company.

Rock Wool

Nolan Szalmasagi, Territory Manager Indiana

Rock Wool is a potential provider of insulation material. The team is currently in discussion with the company.

Irving Materials Concrete

Trent Shannon, Sales

Thermafiber is a potential provider of insulation material. The team is currently in discussion with the company.

Green Fiber Cellulose

Rob Walker, Regional Manager

The team is currently in discussion with the company and they have tentatively said they would supply cellulose material.

Industry Partners & Products On Site

EcoVantage Wood

Rockwool Mineral Wool

Greenfiber Cellulose

AeroBarrier

Greenheck ERV`

Pella Windows

Jefferson Electric Solar

Quartz Countertops

Mitsubishi Heat Pump

Contest Structure

10 Total Contests

6 Juried (60% of total points)

4 Measured (40% of total points)

Highest final score out of 1,000 points wins

Teams must do well across all contests to win!

Measured Contest Areas Testing

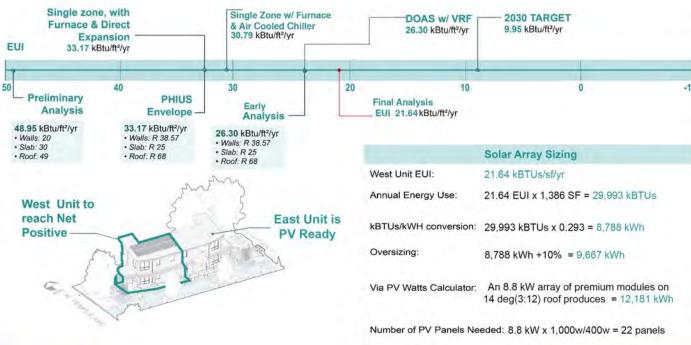
Contest No.	Contest Name	Contest Type	Points	Subcontest Name	Subcontest Points
1	Architecture	Juried	100	None	n/a
2	Engineering	Juried	100	None	n/a
3	Market Analysis	Juried	100	None	n/a
4	Durability and Resilience	Juried	100	None	n/a
5	Embodied Environmental Impact	Juried	100	None	n/a
			Ieasured 100	Hot Water	30
				Interior Light Levels	20
6 Integrated P	Integrated Performance	Measured		Internally Generated Noise	10
				Airtightness	20
				Passive Performance	20
				Kitchen Appliances	30
				Clothes Washing	10
				Clothes Drying	10
	100		Home Electronics	5	
7	7 Occupant Experience	Measured	easured 100	House Occupancy	15
				Electric Vehicle Charging	15
				Grid Responsive Electronics	15
		Measured	red 100	Temperature Control	30
				Humidity Control	20
8	8 Comfort and Environmental Quality			Indoor Air Quality	20
				Comfort Gradient	20
					Exterior Noise Infiltration
		Measured		Energy Efficiency	30
			100	Energy Production	20
9	Energy Performance			Net Zero Energy	30
			Solar Energy Utilization	20	
10	Presentation	Juried	100		n/a

2023 Build Challenge

Instructions: Drag and drop each of the 9 measured contest events onto the calendar (the boxes are sized according to the number of days the event takes) and send back to the Organizers by March 15th, 2023 at sdbuild@nrel.gov. Below is some additional information and conditions to keep in mind when making your team's schedule:

- For contests that involve automated data collection (Continuous Monitoring Period, Interior Light Levels, Solar Energy Utilization, Passive Performance, Energy Production), the scored period will begin at midnight (local time zone) on the first day, and end at midnight on the last day outlined on your schedule. These contests may occur on weekends, as no Organizer presence is necessary.
- The EV charging event requires team members and Organizers to be present at the start and end of the 24-hour period. Neither the start nor end of this event may occur on a weekend.
- The Measured Contest Day may not occur on a weekend, as this involves Organizers to be present via Zoom.
- The Blower Door Test and HERS Rating likely cannot occur on a weekend, unless the third-party vendor allows. The Organizers will create an introduction for you to the vendor. It is not recommended to overlap this event with others, as it will take most of the day and could interfere with ongoing measurements. Teams must work with the vendor to determine a date for this event.
- The Net Zero Energy subcontest is not included in the schedule because it will be completed virtually by a third party.
- The Passive Performance subcontest cannot overlap with any other events.
- The House Occupancy subcontest must occur during the Continuous Monitoring Period.
- Besides the two conditions immediately above, all other contests can be overlapped in any way that teams decide.
- Starting March 20, teams will be subject to a 1 point penalty per day until any one of the 9 subcontests has started.
- Once a team submits their Measured Contest Schedule to the Organizer Team by March 15th, the schedule cannot be changed unless there are extenuating circumstances, as determined by the Organizers.
- Please submit this powerpoint to the Organizers by March 15th, 2023, and include the local time zone for your team's house in the email. The Organizers will check your team's schedule and approve it within 24 hours of the submission as long as it follows the above guidelines.

approve it within 24 hours of the submission as long as it follows the above guidelines.				
Continuous Monitoring Period 5 Days				
Interior Light Levels 3 Days House Occupancy Production 1 Day 1 Day				
Solar Energy Utilization 3 Days		Measured Contest Day 1 Day	Net Zero Energy/Effic Virtual	
Passive Performance 2 Days EV Charging 1 Day		Blower Door/HERS 1 Day		


Measured Contest Areas Testing

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
19	20	21	22	23	24	25
Y	Blower Door/HERS 1 Day		EV Charging 1 Day			rformance FRI 5pm
26	27	28	29	30	31	1
Passive SUN 5 pm	Inte	nterior Light Levels 3 Days		Solar Energy Utilization 3 Days		zation
		D.8 DUE 5 pm	Energy Production 1 Day	Continuo	us Monitorir 5 Days	ng Period
2	3	4	5	6	7	8
	House Occupancy 1 Day	Grand Opening 4-8 pm	Measured Contest 1 Day	AIA Day Talk/Tour 4-6 pm	Net Zero Energy Efficiency (Virtual)	
Contir Monitorii 5 D	ng Period		CAP Alumni 4-8 pm			

Phius Prescriptive Path Targets

BUILDING DESIGN ELEMENT	ZERO ENERGY READY HOME TARGET	PHIUS PRESCRIPTIVE TARGET
Roof R-value	2021 IECC Prescriptive U-factor = 0.024 (R-42)	R = 66 effective
Wall R-value	2021 IECC Prescriptive U-factor = 0.045 (R-23)	R = 35 effective
Window U-factor	0.30	0.17
Window SHGC	0.40	0.40
Airtightness	ACH50 = 3.0	0.04 cfm/ft ² enclosure
Water heater EF	UEF = 2.57	UEF ≥ 3.0
Whole-house mechanical ventilation	2.9 cfm/W; heat exchange not required	1.2 cfm/W; heat exchange required
Lighting efficacy	100% Energy Star varies from 33 to 60 lm/W	≥ 83 lm/W

Inputs EUI **R-Values** Occupancy Schedule Assumptions Walls: R 40 Occupants: 5 Slab: R 20 Heating Set Point: 70 Floor: R 92 Cooling Set Point: 70 21.64 Infiltration Rate: .04 CFM / ft2 Lighting: 0.1 W/ft2 Appliance Use: 0.25 W / ft2 kBtu/ft2/yr AeroBarrier Application **Passive Systems Diagram** Lofty spaces of (Blocked by roof & Breakdown stalcase gives the provision of Stack pergolal Ventilation Pumps - 0.7

Lighting - 0.81

Cooling - 1.31

Healing - 4.62

Equipment - 4.62

Hot Water - 8.14

strategy for internal passive hear gain)

through Cross-Vertilation and

Net-positive Energy Design

The Alley House is all electric, eliminating dependence on fossil fuels while improving building performance and occupant comfort. Students optimized energy use resulting in an Energy Use Intensity (EUI) of 21.64 kBtu/ft2/yr (calculated with COVE. Tool). Preliminary analysis of EUI was 48.95 kBtu/ft2/yr. Through design development, we effectively reduced EUI value by 55.8%. West Unit is net positive energy using 8.8kWh/yr PV system composed of 22 Panasonic Evervolt 400-watt modules. This array produces 21,181 kWh/yr (calculated with Helioscope), a 38% energy surplus.

- Passive heating concrete thermal mass storage offsets active system
- Passive cooling cross + stack ventilation offsets active system in shoulder season
- Daylighting reduces daytime electric load
- Mitsubishi low ambient, split system heat pump heating/cooling is 1.5 ton
- Heating/cooling uses shortducted, soffit mounted air handlers
- Two zones allow upper + lower floor control of heating/cooling
- · AO Smith heat pump water heater provides real-time monitoring and control use
- Condensing dryer extracts ambient heat/discharges dehumidified cooler air
- All appliances are Energy Star rated
- Appliances powered by solar PV + backup battery during weather emergencies

Solar Edge is inverter/panel optimizer with app. that gives real time solar production

Measured Contest: Energy Performance

Solar Array Calculations

Energy Need

EUI (21.64) \times Total SF (1,386) = 29,993 btus/yr

29,993 btus/yr x Conversion Value (0.293) = **8,788 kWh/yr**

Energy Produced

8.8kW PV system composed of 22 Panasonic Evervolt 400w PV modules

≈ 12,181 kWh/yr (Estimated using Helioscope software)

12,181 kWh/yr (Energy Produced)

 $-8,788_{\text{kWh/yr}}$ (Energy Need)

> 3,393 kWh/yr (Energy Surplus)

PV Array Specifications

Panasonic EverVolt 410W/400W

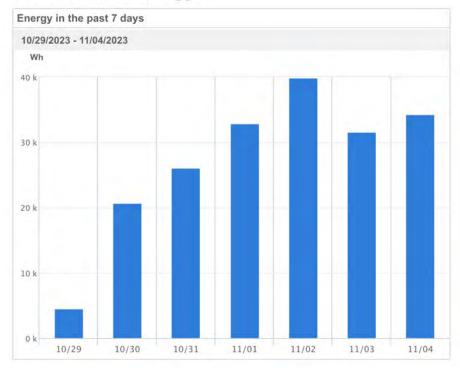
Mono-crystalline cells with 21.6 % efficiency

Solar Edge Inverter & **Power Optimizers**

Maximizes individual production in partially shaded conditions



Measured Contest: Energy Performance



Daylighting limits need for lighting

System Performance

Current Power Energy today Energy this month Lifetime energy 330.24 W 34.26 kWh 138.67 kWh 4.58 MWh

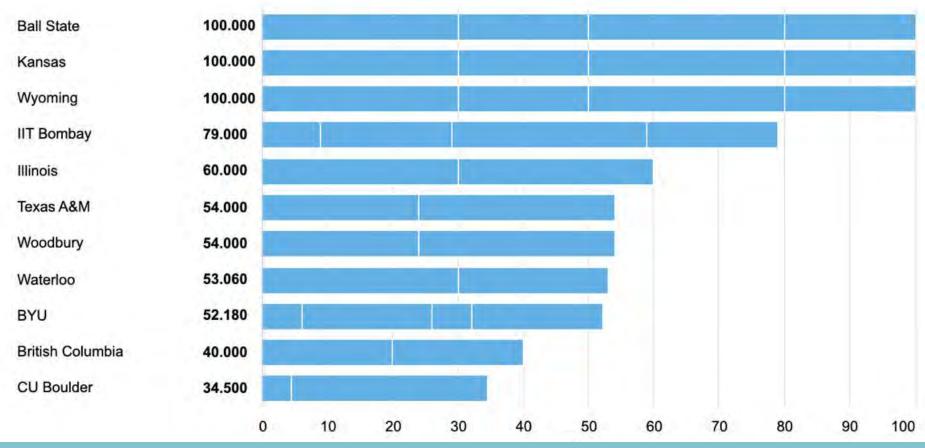
Power and Energy



Last update: 11/04/2023 6:10 PM

Pages

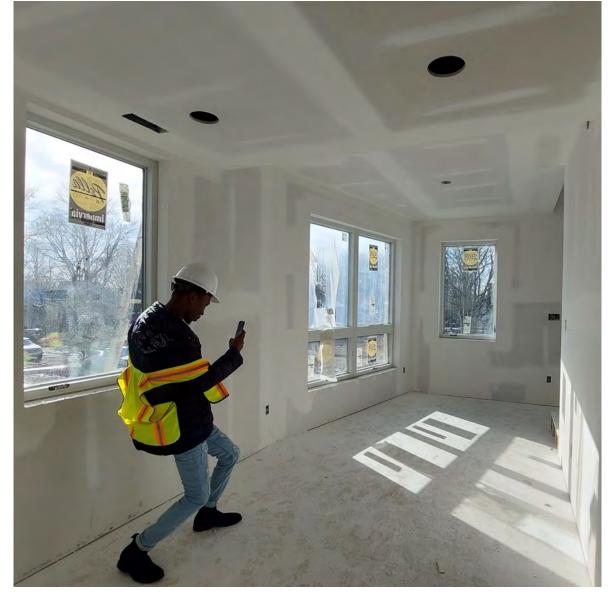
EFFERSON ELECTRIC



Energy Performance Contest Scores

Energy Performance

This Contest evaluates whole-building energy consumption and how it is offset by renewable energy systems.



Monitored Contest: Integrated Performance

3. Autelo entry light 90 lumens / watt

4. Eglo Sabinar Pendant Light 88.89 Lumens/watt

5. Vallmora Bathroom Light 88.89 Lumens/watt

6. Citalali Aluminum Wall Light at Doors 88.89 Lumens/watt

Light sensors in kitchen & study

COMFORT

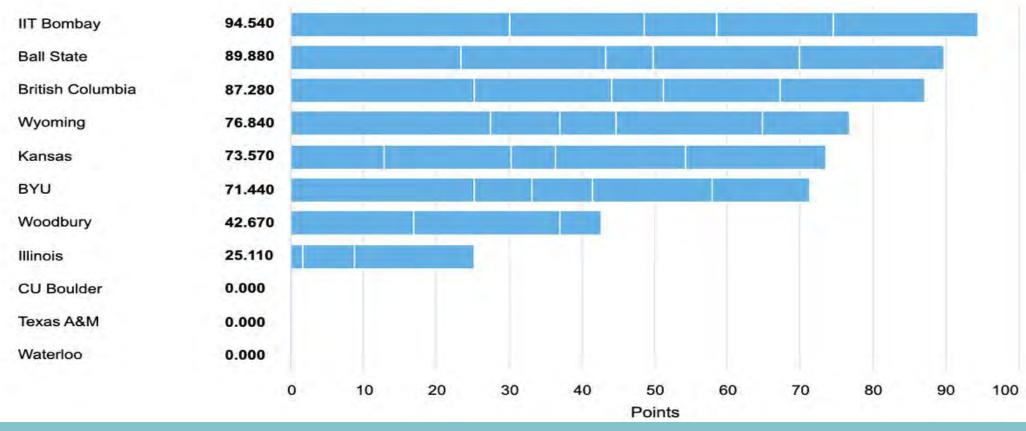
LIGHT & WATER

LIGHTING

- . Turn lights ON at night
- · Turn lights OFF during the day
- · Windows bring in sunlight during the day
- · Light from windows saves energy
- · Light from windows saves money
- · Light from windows keeps you healthy & helps your body maintain a natural circadian rhythm (day/night cycle)

HOT WATER

- . The hot water tank is in the mechanical closet
- · Hot water uses A LOT of energy
- · Making hot water costs you money
- . Do not adjust the temperature on the hot water tank (for safety)
- . Push the VACATION button if you will be
- · TURN OFF the vacation setting when you get
- The tank is different than typical ones. It may be louder and it may make the closet cold.
- · Tank can be adjusted. Ask Englewood CDC to help

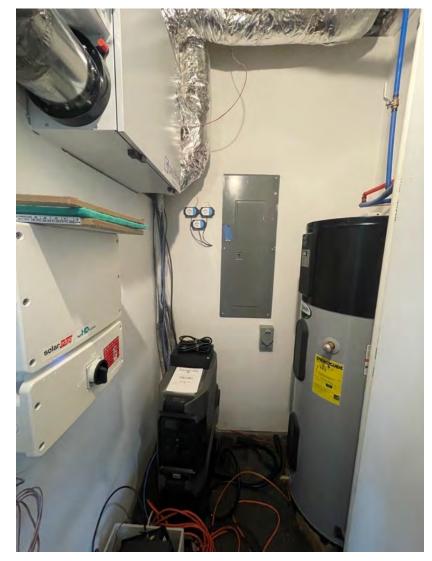


Integrated Performance Contest Scores

Integrated Performance

This Contest evaluates the interdependencies of building design elements to achieve optimized whole building performance. In a truly integrated design, when any element is altered or removed from the building, overall building performance is diminished.

Integrated Performance Contest Scores



Integrated Performance Compared

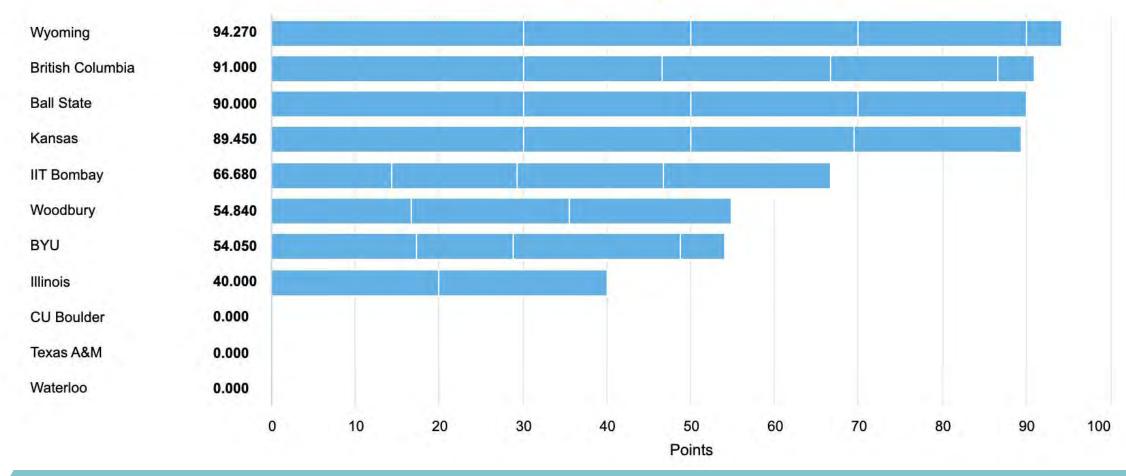
SOLAR DECATHLON CHALLENGE	SUPPORTING PHIUS ELEMENTS
Integrated Performance: Airtightness Subcontest— All available points are earned for a measured air tightness of less than or equal to 0.05 cfm50/ft²	Exceptionally low infiltration; quality assurance protocols that involved multiple blower door tests
Integrated Performance: Passive Performance Subcontest— The home's ability to retain interior thermal comfort over a 48-hour period without the use of active heating or active cooling	Exceptionally low infiltration; triple paned windows; high-R enclosure; verified solar control; reduced interior loads resulting from lighting and appliance efficiency
Integrated Performance: Lighting Illuminance Subcontest— 300-1,500 lx monitored over 3 days	Excellent daylighting offer little use of electric lighting during daytime; verified lighting efficacy > 83 lm/W in light fixtures

Measured: Comfort & Environmental Quality

Measured: Comfort & Environmental Quality

Comfort/Environment & Occupant Experience

- April 3rd House Occupancy Dinner with 6 guests, 2 from Ball State, 2 from the Community and 2 from the Building Industry with 4 students and faculty.
- April 5th was Alumni Day and One Ball State Day of Giving. 98 past students, now Alumni, came out to see the Alley House.
- April 15th was Ball State Open
 House Day at the Alley House.
 Tours and food were enjoyed by
 238 attendees, which included the
 president of Ball State University,
 the dean of the College of
 Architecture and Planning, the chair
 of the architecture department,
 student and faculty co-leads, and
 the director of sustainability whom
 all spoke a few words about the
 project.



Comfort & Environmental Quality Scores

Comfort & Environmental Quality

This Contest evaluates the building's capability to deliver intended comfort and indoor environmental quality.

Comfort & Environmental Quality Contest Scores

SOLAR DECATHLON CHALLENGE	SUPPORTING PHIUS ELEMENTS
Comfort and Environmental Quality: Temperature and Humidity Control Subcontest— All available points are earned for maintaining a time-averaged interior dry-bulb temperature between 68°F and 74°F and a time-averaged relative humidity between 35% and 50%.	Exceptionally low infiltration; triple paned windows; high-R enclosure; verified solar control
Comfort and Environmental Quality: Indoor Air Quality Subcontest— All available points are earned for a time-averaged interior CO2 level below 1,000 PPM following occupancy of at least 8 individuals for 1 hour.	Balanced ventilation using an ERV; compliance with the EPA's IndoorAir PLUS program

SOLAR DECATHLON CHALLENGE	SUPPORTING PHIUS ELEMENTS
Comfort and Environmental Quality: Comfort Gradient Subcontest— All available points are earned for achieving a maximum delta of time-averaged interior dry-bulb temperatures of 3°F across all measurement locations.	Exceptionally low infiltration; triple paned windows; high-R enclosure; verified solar control; concern for air distribution
Comfort and Environmental Quality: Exterior Noise Infiltration Subcontest All available points are earned for a measured sound pressure level from outside noise intrusion less than or equal to 35 dBA based on peak hour sound level equivalents of 90 dBA.	Exceptionally low infiltration; triple paned windows; high-R enclosure Oddly the Alley House did not do well in this subcontest—despite the above design moves

Measured Contest: Occupant Experience

RESIDENT GUIDE

COMFORT FRESH AIR

BOOST

the bathrooms

CEILING FANS

- · Fresh air keeps you happy & healthy
- · The ventilation system runs all the time
- The system brings in fresh air
- . The system gets rid of stale air
- · You don't need to adjust it at all
- · Equipment is in the mechanical room

. TIMER SWITCHES behind the stove and in

. USE when there is a lot of steam from showers • It turns the exhaust up for a few minutes

TURN ON Ceiling fans in each room

Fans let you set thermostats higher to save

· Fans will make you feel cooler

· Fans make a house feel less stuffy

· Fans use very little electricity

COMFORT

HEAT & AC

Measured Contest: Occupant Experience

- . On thermostat, select Mode and then Heat Set the thermostats to:
- 68-70 degrees WHEN YOU ARE HOME
- 61 degrees WHEN SLEEPING OR AWAY
- Thermostats can be programmed. Ask. Englewood CDC to help

AIR-CONDITIONING (AC)

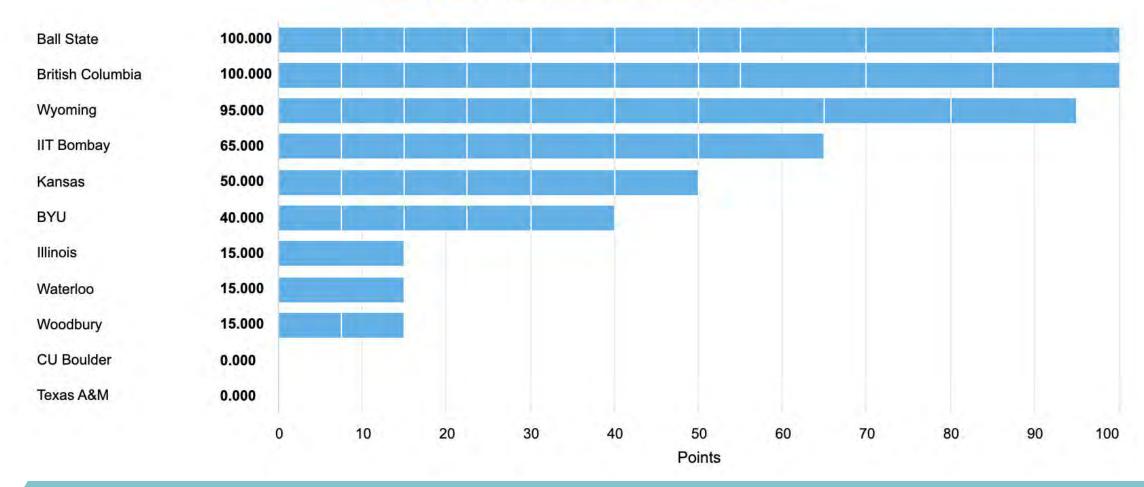
- . On thermostat, select Mode and then Cool Set the thermostats to:
- 77-78 degrees WHEN YOU ARE HOME
- 77-78 degrees WHEN SLEEPING
- 84 degrees WHEN AWAY
- 80-82 degrees IF USING CEILING FANS
- · Pull blinds in summer to keep sun out
- · Thermostats can be programmed. Ask Englewood CDC to help

WASTING ENERGY

- Keeping the heat too high in winter or the AC too low in summer wastes energy.
- · Energy is expensive
- . Turning thermostats down or up when not home or sleeping saves you money

SYSTEM

- · Equipment is hidden in the drop down ceilings in the kitchen and upstairs flex space
- Thermostats are near downstairs bathroom & upstairs bedroom doors
- · Upstairs has one thermostat
- . Downstairs has one thermostat
- . Outdoor unit will blow warm air



Occupant Experience Contest Scores

Occupant Experience

This Contest evaluates how the building design prioritizes occupant experience, productivity, and quality of life.


Occupant Experience Contest Scores

Phius Conformed 2022

Juried Contest: Durability & Resilience

Locally Sourced Materials

- Thermally modified wood used on exterior and interior details
- Reclaimed limestone slabs for walkway set in gravel
- Reclaimed walnut wood for built-ins
- Cement board siding with rainscreen for moisture control and durability

Design & Construction Detail

 Well-detailed continuous control layers and rain screen

Manufacturers' Warranties

- Reduce maintenance burden for occupants
- Improve building longevity
- Resident Guide for use of the Alley House explaining passive design strategies and active systems

Phius Conference 2023 | Houston, Texas

November 8-11, 2023

Juried Contest: Durability & Resilience

EcoFlow Delta Pro 2

- Portable and expandable backup system
- Outlet to plug into when power outage to utilize battery backup
- Interlock in electrical panel can easily be toggled by the homeowner during power outages
- Two batteries 7200W, 240V output
- 7.2 kWh capacity total

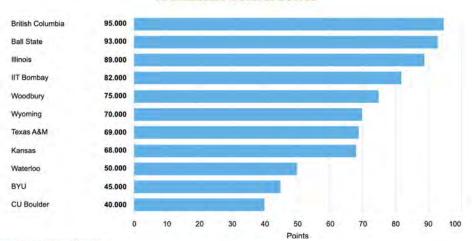
Weathering an Outage

During an outage, it is estimated that the EcoFlow Delta Pro 2 system can power the following critical functions:

Refrigerator: 4 days

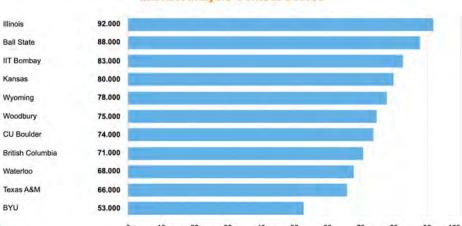
Lighting: 8 days

Air conditioner: 7 hours


SOLAR DECATHLON CHALLENGE	SUPPORTING PHIUS ELEMENTS
Durability and Resilience: Durability— The ability of the building envelope to maintain long-term performance despite routine environmental conditions	Continuous control layers that were well- articulated, well-detailed, and site inspected; substantively reduced infiltration
Durability and Resilience: Resilience— The ability of the building to maintain critical operations during disruptions and quickly restore normal operations.	Battery backup system with substantially reduced heating and cooling loads that extend the life of battery backup during outages

Architecture

This Contest evaluates the building's architecture for creativity in matching form with function, overall integration of systems, and ability to deliver both outstanding aesthetics and functionality.


Architecture Contest Scores

Market Analysis

This Contest evaluates the building's appeal, affordability, and attainability to the stated target market. This includes addressing specific market needs, such as affordability and financial feasibility, and socioeconomic barriers to increase likelihood of adoption by intended occupants and the construction industry for impactful, cost-effective design.

Market Analysis Contest Scores

Juried Contest Areas Results

FRIDAY 4/21/2023	Duration Architecture Engineering Analy		Market Analysis	Durability & Resilience	Embodied Environmental Impact	Presentation	
1000	14 July 11	Brigham Young	Ball State	University of			
9:00 AM	0:30	University	University	British Columbia			
9:30 AM	0:10						
9:40 AM	0:30	University of Illinois Urbana- Champaign	University of Colorado Boulder	Indian Institute of Technology Bombay			
10:10 AM	0:20						
10:30 AM	0:30	University of Waterloo	University of Kansas	Texas A&M University			
11:00 AM	0:10						
11:10 AM	0:30	BREAK	Woodbury University	University of Wyoming			
11:40 AM	0:10						
11:50 AM	1:00				LUNCH		
12:50 PM	0:10						
1:00 PM	0:30	University of British Columbia	Brigham Young University	Ball State University	University of Kansas	Texas A&M University	University of Waterloo
1:30 PM	0:10						
1:40 PM	0:30	Indian Institute of Technology Bombay	University of Illinois Urbana- Champaign	University of Colorado Boulder	Woodbury University	University of Wyoming	BREAK
2:10 PM	0:20	T 4044	15-1	11	D. II C.	Delegation of Baldyle	D. I. V
2:30 PM	0:30	Texas A&M University	University of Waterloo	University of Kansas	Ball State University	University of British Columbia	Brigham Young University
3:00 PM	0:10						
3:10 PM	0:30	University of Wyoming	BREAK	Woodbury University	University of Colorado Boulder	Indian Institute of Technology Bombay	University of Illinois Urbana- Champaign
3:40 PM	0:20	Conclude	Conclude	Conclude	Conclude	Conclude	Conclude

Engineering:

- Very well thought out design that goes above and beyond
- Materials selection allowed HVAC to be smaller than typical home of this size
- Aggressive heating and cooling setpoints (e.g. heating setpoint of 68) could lead to problems meeting space temperature requirements
- Decision to incorporate ERV was bold but necessary
- Very polished, professional-grade documentation and construction drawings
- Appreciated well thought out enclosure based around interesting slab insulation system
- Continuous mineral wool and thorough ceiling insulation
- Liked utilization of Passive House framework in pursuit of certification

Market Analysis:

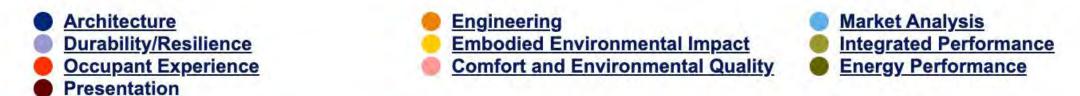
- Responsible design for surrounding community
- Liked partnership with ECDC; created specific context and attainable goals
- Easily adaptable for multiple generations
- Average rent payment \$1669 but target market has a median income of 25k
- Impressive, scalable financing plan focused on affordable housing
- Real and sustained community engagement

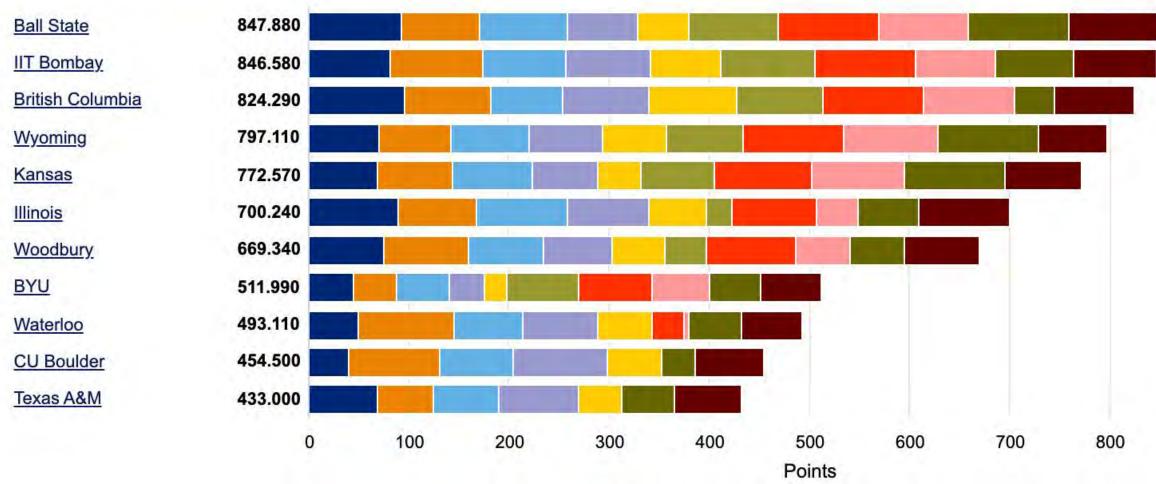
Presentation:

- Detailed, well-considered plan that required serious commitment to see through to completion
- Detailed evaluation of site opportunities and neighborhood gave clear rationale behind design decisions
- Excellent graphic design throughout materials, cohesive articulation of concept and design
- Commendable local news segment
- Admirable plan, proposal, and execution of this project
- Inspires community and end users of home
- Very <u>well planned</u> community exhibition
- Liked how the team worked with university's marketing and communications department
- A lot of information provided, could have been a little more succinct
- Main presenters were all virtual and reading very fast; students in the room looked a little bored and not utilized well during the <u>presentation</u>
- Initial submission was "phenomenal", but energies of written materials provided and the live presentation did not match up
- Felt like you could see the house by the way it was well documented

Juried Contest Areas Comments

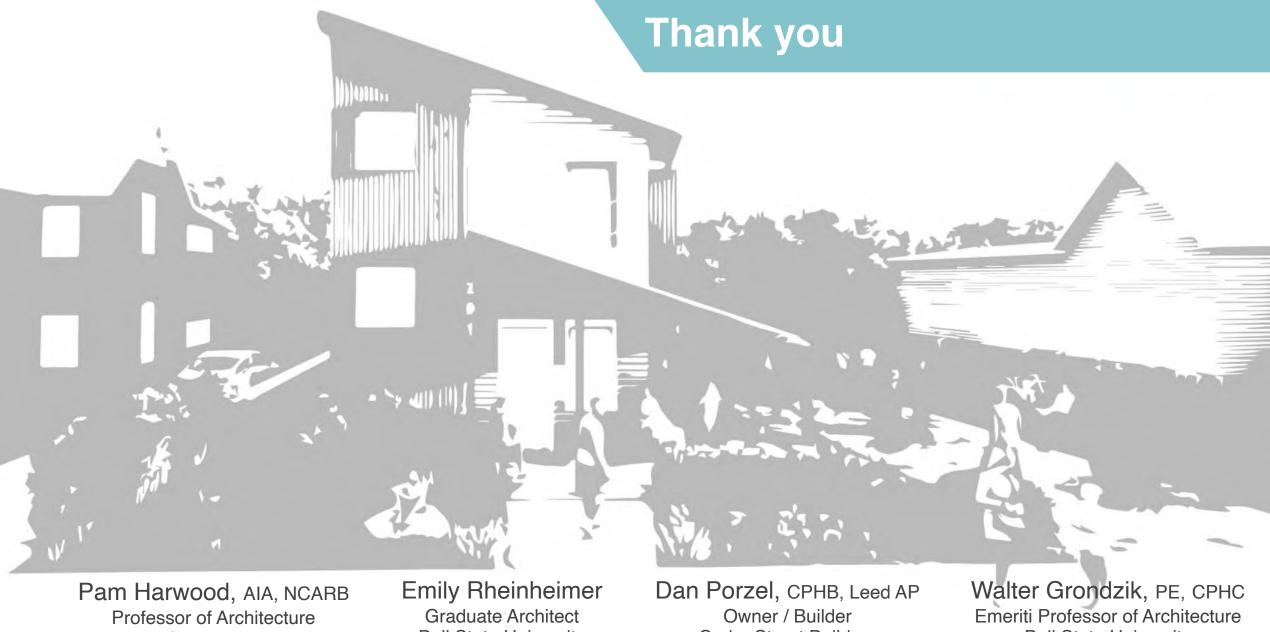
Building the Next Generation


2023 Build Challenge Juried Contest Feedback: Ball State University


Architecture:

- Very thorough presentation; successful approach, coherence, and implementation
- Could be more innovation in design
- Liked minimization of hallways through flex space and other strategies, and pergola and planters along the alley
- Thoughtful use of materials
- Good idea to separate the building east-west to ensure equal solar access and minimize sound transition between units
- Loved the stair railing feature but not articulated well enough in presentation
- Great drawings and documentation
- Cool custom light fixture
- Functional floor plan maximizes quality out of constrained space, great use of built-in furniture
- Slight angle at south corners adds construction cost but not sure how much value is added
- Good answers during presentation
- Created a beautiful home that contributes positively to the community and people who will live there

Measured & Juried Contest Areas Results



Ball State University

Ball State University

Cedar Street Builders

Ball State University